Cellular 'stress sensor' that also modulates metabolism could offer therapeutic target for diabetes

July 31, 2013
Cell biology: Cellular damage control’s link with diabetes
Experiments in a fruit fly model offer useful insights into a potentially important clinical target in human obesity and diabetes. Credit: 2013 European Molecular Biology Laboratory

An organelle called the endoplasmic reticulum (ER) helps to process newly synthesized proteins destined for delivery to the cell membrane. When the ER becomes overloaded and begins to accumulate poorly folded proteins, an 'ER stress' response ensues. ER stress tends to occur in obesity and other metabolic disorders. Now, research from Stephen Cohen and colleagues at the A*STAR Institute of Molecular and Cell Biology has revealed a potential therapeutic target linking ER stress to the onset of diabetes.

Cohen's team initially set out to identify components of the . "We were screening for genes involved in tissue growth control in the fly," he says (see image). "Growth is regulated in part by the insulin pathway, so such screens can also pick up genes that function as metabolic regulators." Their screen focused on FOXO, a protein that acts as a regulator of other genes. Insulin signaling causes FOXO to segregate in the cytoplasm, so that it can no longer bind its in the nucleus. The researchers therefore searched for other genes that modulate FOXO activity.

They uncovered a link between PERK, a protein that disseminates signals involved in ER stress, and FOXO. When they genetically modified fruit flies to produce excess FOXO, this protein suppressed insulin-induced growth and the flies matured with small, underdeveloped eyes. However, when the researchers also reduced PERK levels in these flies, returned to normal, indicating that PERK helps amplify the effects of FOXO.

Follow-up experiments demonstrated that PERK introduces chemical modifications to FOXO that help direct this protein to the nucleus where it executes its gene regulatory functions. Cohen and colleagues demonstrated that PERK also boosts FOXO function in , and found that lowering PERK activity increased these cells' sensitivity to insulin signaling. FOXO also helps to promote in cells by increasing production of the insulin receptor—which in turn inactivates FOXO. Thus, PERK contributes significantly to an important metabolic feedback loop.

This system could be susceptible to break down if PERK activity were to intersect with other ER stress-induced signaling pathways. This could accelerate the onset of metabolic disease by promoting insulin resistance, a disruption of insulin signaling that is also a critical step towards onset of diabetes. "We are very interested in the potential that PERK could be used to modulate insulin responsiveness," says Cohen. "We are now exploring the biological functions of PERK to better understand its potential usefulness as a ."

Explore further: Revising the 'textbook' on liver metabolism offers new targets for diabetes drugs

More information: Zhang, W., Hietakangas, V., Wee, S., Lim, S. C., Gunaratne, J. & Cohen, S. M. ER stress potentiates insulin resistance through PERK-mediated FOXO phosphorylation. Genes & Development 27, 441–449 (2013). www.genesdev.org/cgi/doi/10.1101/gad.201731.112

Related Stories

Revising the 'textbook' on liver metabolism offers new targets for diabetes drugs

February 21, 2012
A team led by researchers from the Institute for Diabetes, Obesity and Metabolism (IDOM) at the Perelman School of Medicine, University of Pennsylvania, has overturned a "textbook" view of what the body does after a meal. ...

Protecting the body in good times and bad

July 16, 2013
The nasty side effects of radiation and chemotherapy are well known: fatigue, hair loss and nausea, to name a few. Cancer treatment can seem as harsh as the disease because it can't differentiate healthy cells from cancerous ...

Protein in fat cells that stimulates inflammatory signaling helps put gears in motion for onset of diet-induced obesity

March 15, 2013
Poor diet and lifestyle choices set the stage for obesity and diabetes, but the immune system plays a relatively underappreciated role in accelerating this process. Metabolic changes in fat cells stimulate the release of ...

Treatment target for diabetes, Wolfram syndrome

August 7, 2012
Inflammation and cell stress play important roles in the death of insulin-secreting cells and are major factors in diabetes. Cell stress also plays a role in Wolfram syndrome, a rare, genetic disorder that afflicts children ...

Recommended for you

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

Twin study finds genetics affects where children look, shaping mental development

November 9, 2017
A new study co-led by Indiana University that tracked the eye movement of twins finds that genetics plays a strong role in how people attend to their environment.

Boy with rare disease gets brand new skin with gene therapy

November 8, 2017
Doctors treating a critically ill boy with a devastating skin disease used experimental gene therapy to create an entirely new skin for most of his body in a desperate attempt to save his life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.