First comprehensive regulatory map is a blueprint for how to defeat tuberculosis

July 3, 2013, Seattle Biomedical Research Institute

Despite decades of research on the bacterium that causes tuberculosis (TB), scientists have not had a comprehensive understanding of how the bacterium is wired to adapt to changing conditions in the host. Now, researchers at Stanford University, Seattle BioMed, Boston University and the Broad Institute, Max Planck Institute of Biology in Berlin, Germany, Caprion Proteomics Inc. in Montreal, Canada, Brigham and Woman's Hospital (Harvard University), and Colorado State University have taken the first steps toward a complete representation of the regulatory network for Mycobacterium tuberculosis. This map of the network of genes that control the TB bacterium will yield unique insights into how the bacteria survive in the host, and how they can be tackled with new drug interventions.

The landmark results are published this week in the journal Nature.

The burden of tuberculosis

One third of the world's population is latently infected with TB, harboring the bacteria in a dormant form in the lungs. In 2011 alone, 8.7 million people fell ill with the active form of TB, and 1.4 million died.

For hundreds of years, people have associated reduced oxygen tension with the control of TB. Artificially collapsing an infected lung using a pneumothorax device, or inserting golf ball-sized items into the , were common ways to treat the disease before the rise of antibiotics. Despite the prevalence of these treatment methods, the bacteria appeared to survive in the host, even in hypoxic environments.

"We needed a window into how tuberculosis adapts to change, whether that is a or a new drug," explains David Sherman, Ph.D., a lead researcher from Seattle BioMed. "In order to do that, we needed to understand how TB is wired—how its genes and the molecules that regulate them are related—so we can see how it changes its behavior depending on the environment."

Mapping tuberculosis

In order to create a map of how TB genes are regulated, researchers led by Gary K. Schoolnik, Ph.D., at the Stanford Medical School, David Sherman, Ph.D., of Seattle BioMed and James E. Galagan, Ph.D., of Boston University and the Broad Institute, turned to technologies that identified the key players in the system. Using ChIP-Seq, a method to analyze how proteins interact with DNA, they identified where 50 of TB's regulatory bound to DNA, thereby providing the wiring diagram of genetic connections.

Though this kind of linking of transcription factors to genes had been done piecemeal in the past, Sherman explains, this is the first time that such a comprehensive study has been done all at once. "Nobody has ever done ChIP-Seq for every transcription factor in an organism," he says. "This is a far more global view of one organism's wiring than anyone has ever achieved before."

Creating a road map for future interventions

Because the regulatory map yields a systems view of how different genes in the TB bacterium interact, it will be useful to virtually everyone who studies TB, says Sherman. The network provides key insights into the relative regulatory importance of some genes, and yields unexpected relationships between others.

"Everyone who studies TB can now look at this wiring diagram and gain a better understanding of how their favorite relate in a larger context," he says. "Suddenly, we can see how different areas connect, in intimate and important detail."

Though this map is the most comprehensive to date, Sherman and his colleagues plan to fill it out even further by incorporating the sequences of the remaining transcription factors and their relationship to the TB genome. The will eventually provide a window into how targeted drugs or immunological interventions could interfere with TB's ability to survive in the host, adding a critical weapon to the fight against TB's worldwide devastation.

Explore further: Treating TB: What needs to be done to improve treatment rates

More information: Pape: dx.doi.org/10.1038/nature12337

Related Stories

Treating TB: What needs to be done to improve treatment rates

July 1, 2013
People with tuberculosis (TB) in China often delay going to see a doctor for more than two weeks, finds research in BioMed Central's open access journal BMC Medicine. Reasons for this include a poor understanding of TB, increasing ...

Study finds vitamin C can kill drug-resistant TB (w/ video)

May 21, 2013
In a striking, unexpected discovery, researchers at Albert Einstein College of Medicine of Yeshiva University have determined that vitamin C kills drug-resistant tuberculosis (TB) bacteria in laboratory culture. The finding ...

New tuberculosis research movement needed

November 30, 2011
In this week's PLoS Medicine, Christian Lienhardt from the WHO in Geneva, Switzerland and colleagues announce that the Stop TB Partnership and the WHO Stop TB Department have launched the TB Research Movement.

Research reveals new drug target urgently needed for tuberculosis therapy

December 20, 2012
One third of the world is infected with the bacterium that causes tuberculosis (TB), a disease that is increasingly difficult to treat because of wide spread resistance to available drugs. Researchers from the Institute of ...

Scientists to study the role genes play in treating tuberculosis

October 25, 2012
The University of Liverpool has been awarded funding to determine whether differences in our genes determine how patients respond to drugs used to treat Tuberculosis (TB) in Sub-Saharan Africa.

Scientists explain unique activity of TB drug pyrazinamide

August 11, 2011
Pyrazinamide has been used in combination with other drugs as a first-line treatment for people with tuberculosis (TB) since the 1950s, but exactly how the drug works has not been well understood.

Recommended for you

Deadly Rift Valley fever: New insight, and hope for the future

July 19, 2018
Health control measures alone could be ineffective in the long term fight against the deadly Rift Valley fever which affects both humans and animals, a new study in the journal PNAS reports.

New guidelines to diagnose, manage rare endocrine disorders

July 19, 2018
International guidelines have been published for the first time to help doctors around the globe diagnose and manage patients with a very rare set of endocrine diseases known as pseudohypoparathyroidism and its related disorders, ...

Overuse of antibiotics not what the doctor ordered

July 19, 2018
With increased use of antibiotics worldwide linked to growing antibiotic resistance, a world-first study co-authored by a QUT researcher has highlighted the growing impact of non-prescription supply of antibiotics in community ...

Alcohol-related cirrhosis deaths skyrocket in young adults

July 18, 2018
Deaths from cirrhosis rose in all but one state between 1999-2016, with increases seen most often among young adults, a new study shows.

Hidden blood in feces may signal deadly conditions

July 17, 2018
(HealthDay)—Even if it's not visible to the naked eye, blood in the stool can be serious—a sign of a potentially fatal disease other than colon cancer, new research suggests.

Childhood abuse linked to greater risk of endometriosis, study finds

July 17, 2018
Endometriosis, a painful condition that affects one in 10 reproductive-age women in the U.S., has been linked to childhood physical and sexual abuse, according to findings published today in the journal Human Reproduction.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.