Researchers explore new treatments for a leading genetic cause of infant deaths

July 19, 2013

Researchers at Iowa State University have identified an RNA structure in humans that could lead to a new treatment for spinal muscular atrophy, the leading genetic cause of death in babies and young children.

Ravindra Singh, a professor of in the ISU College of Veterinary Medicine, is the lead author of a paper published this week in the journal Nucleic Acids Research that details the discovery of a novel that could be modified by medication, leading to new treatment possibilities for the disease.

Spinal results from the loss or mutation of a gene called Survival Motor Neuron 1, often referred to as SMN1. If SMN1 is deleted or doesn't function properly, not enough SMN protein is produced, giving rise to the disease.

Luckily, the vast majority of humans have a nearly identical gene, referred to as SMN2, which can function as a substitute. But a critical portion of SMN2 is sometimes erroneously removed during the process known as splicing, or when pre-mRNA is turned into mRNA by getting rid of non-functioning parts of the gene.

In the new paper, Singh and his colleagues have discovered an RNA structure exclusively formed by intronic sequences, or sequences that are removed during splicing. By targeting that structure, it may be possible to develop new treatments that prevent the mistake in the splicing process that causes the loss of function of SMN2, Singh said. If so, this is the first time a deep intronic structure can be targeted for therapy.

"About a quarter of a person's genome is made up of introns, or non-coding sequences, that must be removed through splicing throughout life," Singh said. "We've found an RNA structure that aberrantly promotes the escape of one of the coding sequences through splicing."

Singh cautioned that development of a new treatment would have to go through years of and further study, but the bottom line is that the research could result in a new way to cure . In fact, private companies have shown interest in negotiating with Iowa State to begin development of a drug based on the research, Singh said.

He said the paper required about five years of painstaking work, testing hundreds of to individual gene sequences one at a time to see if they have an effect on splicing.

"The process involves a lot of trial and error," he said.

Studying RNA structures within the non-coding portion of the human is still a relatively untouched frontier with much left to teach us, Singh said. It appears that RNA structures hold enormous information, and new techniques for studying RNA structures are unlocking new possibilities that could have major implications for how we treat genetic diseases, he said.

"In many ways this is still a very poorly understood field," Singh said. "But around half of all genetic diseases are a result of errors in splicing, so we have much to gain from answering these questions."

Explore further: Structure that edits messenger RNA transcripts defective in two different forms of motor neuron diseases

More information: nar.oxfordjournals.org/content … 7/14/nar.gkt609.full

Related Stories

Structure that edits messenger RNA transcripts defective in two different forms of motor neuron diseases

April 26, 2013
Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are degenerative motor neuron diseases in which the key mutated genes are involved in RNA metabolism. This similarity suggests that a common dysregulation ...

Research suggests new cause to blame for spinal muscular atrophy

June 21, 2012
Over 15 years ago, researchers linked a defect in a gene called survival motor neuron -- or SMN -- with the fatal disease spinal muscular atrophy. Because SMN had a role in assembling the intracellular machinery that processes ...

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.