New way to target an old foe: Malaria

July 17, 2013

Although malaria has been eradicated in many countries, including the United States, it still infects more than 200 million people worldwide, killing nearly a million every year. In regions where malaria is endemic, people rely on preventive measures such as mosquito netting and insecticides. Existing drugs can help, but the malaria parasite is becoming resistant to many of them.

Scientists working to develop new drugs and vaccines hope to target the parasite in the earliest stages of an infection, when it quietly reproduces itself in the human .

In a major step toward that goal, a team led by MIT researchers has now developed a way to grow that can support the liver stage of the life cycle of the two most common species of malaria, Plasmodium falciparum and Plasmodium vivax. This system could be used to test drugs and vaccines against both species, says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science at MIT.

Bhatia is the senior author of a paper describing the liver-tissue system in the July 17 issue of the journal Cell Host & Microbe. The paper's lead author is Sandra March, a research scientist in Bhatia's lab, and scientists from the Broad Institute, Sanaria Inc. and the University of Lisbon also contributed to the research.

Reproducing infection

The malaria life cycle has several stages. Once the parasite infects a human victim, through a mosquito bite, it takes up residence in the liver. The parasite spends about a week in the liver, producing tens of thousands of copies that eventually burst free to infect blood cells. After this initial infection, P. vivax can lurk for weeks, months or even years, reactivating to cause another malaria bout.

So far, researchers have been able to grow P. falciparum in human blood and, to a certain extent, in its liver stages, but they have not been able to reliably grow P. vivax in either stage. P. falciparum has the highest malaria mortality rate, but P. vivax can cause debilitating, long-term infections. To eradicate malaria, drugs and vaccines that target both species will probably be needed, Bhatia says.

Bhatia—who is also a senior associate member of the Broad Institute and a member of MIT's Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science—has previously created micropatterned surfaces on which liver tissue can be grown, surrounded by supportive cells. These engineered cells survive for up to six weeks and mimic most of the functions of liver cells in the body, including drug metabolism and production of liver proteins.

Using unique, frozen samples of P. falciparum obtained in collaboration with Stephen L. Hoffman and his team at Sanaria, the researchers infected healthy liver cells and observed the development of liver-stage parasites using an automated imaging system designed in collaboration with Anne Carpenter's group at the Broad Institute. This system allows them to quickly evaluate not only how much infection has occurred, but also the effects of potential drugs. They can also measure how weakened forms of the parasites, which could be used as vaccines, perform in the liver.

To test the system's usefulness, the researchers studied a P. falciparum vaccine that is now in clinical trials. For a weakened, or attenuated, parasite to succeed as a vaccine, it must infect the liver and progress enough to raise an immune response, but then arrest and not reach the blood stage. The researchers showed that the now in trials does follow that trajectory.

The new system could also be used for larger-scale drug studies than previously possible, Bhatia says. Researchers now use liver cancer cells grown in the lab to study P. falciparum infection, but those cells have deficient drug metabolism and keep growing instead of providing a quiet home for the parasite to persist.

Seeking P. vivax

Obtaining enough P. vivax samples to test the system took several years, but the team eventually acquired samples, flown in from Thailand, India and South America. Using these samples, they were able to grow P. vivax in liver tissue and show that it produces small persistent parasites that appear to be dormant forms called hypnozoites.

"We don't want to call them hypnozoites yet, because nobody has a gold-standard marker for them, but we have persistent small forms that live for three weeks. So we are optimistic and doing more to wake them up again. Reactivation would be the ultimate confirmation," Bhatia says.

The researchers are now working on confirming that the P. vivax they grew in the liver tissue really did create hypnozoites. Once this is confirmed, they plan to start testing some candidate drugs, now in development, against P. vivax.

Explore further: Researchers find new class of highly potent antimalarial compounds

Related Stories

Researchers find new class of highly potent antimalarial compounds

July 10, 2013
Despite renewed global efforts for eradication, malaria continues to exert devastating effects on human health. An estimated 220 million people are infected each year by malaria-causing Plasmodium parasites, which are transmitted ...

Researchers are one step closer to artificial livers

June 2, 2013
Prometheus, the mythological figure who stole fire from the gods, was punished for this theft by being bound to a rock. Each day, an eagle swept down and fed on his liver, which then grew back to be eaten again the next day.

Cross-species malaria immunity induced by chemically attenuated parasites

July 1, 2013
Malaria, a mosquito-born infectious disease, kills over 600,000 people every year. Research has focused on the development of a vaccine to prevent the disease; however, many malaria vaccines targeting parasite antigens have ...

Sequencing of malaria genomes reveals challenges, opportunities in battle against parasite

August 5, 2012
Genetic variability revealed in malaria genomes newly sequenced by two multi-national research teams points to new challenges in efforts to eradicate the parasite, but also offers a clearer and more detailed picture of its ...

Study finds protein in platelets fight malaria but only for some people

December 7, 2012
(Medical Xpress)—Researchers in Australia have found that a protein in platelets found naturally in blood has a protective effect against malaria. In their paper published in the journal Science, the team describes how ...

Malaria vaccination strategy provides model for superior protection

June 15, 2011
Malaria is a devastating disease caused by the Plasmodium parasite which is transmitted to humans by infected mosquitoes. Hundreds of millions of new cases of malaria are reported each year, and there are more than 750,000 ...

Recommended for you

Childhood poverty, poor support may drive up pregnant woman's biological age

October 16, 2017
Pregnant women who had low socioeconomic status during childhood and who have poor family social support appear to prematurely age on a cellular level, potentially raising the risk for complications, a new study has found.

Chronic inflammation plays critical role in sustained delivery of new muscular dystrophy therapy

October 16, 2017
Macrophages, a type of white blood cell involved in inflammation, readily take up a newly approved medication for Duchenne muscular dystrophy (DMD) and promote its sustained delivery to regenerating muscle fibers long after ...

Worms reveal secrets of aging: Researchers discover a conserved pathway that controls aging

October 13, 2017
Investigators at Case Western Reserve University School of Medicine and University Hospitals Health System have identified a new molecular pathway that controls lifespan and healthspan in worms and mammals. In a Nature Communications ...

New study demonstrates importance of studying sleep and eating in tandem

October 13, 2017
A new study from scientists on the Florida campus of The Scripps Research Institute (TSRI) offers important insights into possible links between sleep and hunger—and the benefits of studying the two in tandem. A related ...

'Ridiculously healthy' elderly have the same gut microbiome as healthy 30 year-olds

October 11, 2017
In one of the largest microbiota studies conducted in humans, researchers at Western University, Lawson Health Research Institute and Tianyi Health Science Institute in Zhenjiang, Jiangsu, China have shown a potential link ...

A specific protein regulates the burning of body fat to generate heat

October 11, 2017
Scientists at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) have identified a protein that holds promise as a target for therapies to reduce obesity. Drs. Guadalupe Sabio and Nuria Matesanz have ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.