Gene therapy using lentivirus promising in three youngsters

July 11, 2013
A machine engineering HIV viruses that are shuttled to the affected brain by a rollercoaster, which represents both the vasculature routing the genetically engineered hematopoietic cells to the brain as well as the DNA helix into which the virus insert its therapeutic genetic cargo. The choice of objects, background color, and the intense stare of the treated boy communicate a sense of wonder as well as awareness of the implications of the bold, new gene therapy attempt. Credit: Günter Pusch (gunter-pusch.com)

Two Houston researchers from Baylor College of Medicine and Texas Children's Hospital were part of an international team that developed a new gene therapy approach to treatment of Wiskott-Aldrich Syndrome, a fatal inherited form of immunodeficiency.

The new research, led by researchers at the San Raffaele Telethon Institute for Gene Therapy in Milan, Italy was published in Science Express.

The disorder that weakens the body's immune system is caused by a mutation in a gene that encodes the protein WASP. The most often used therapy is a bone marrow or from a matching donor—often a sibling or relative. It can be curative for some patients – mostly those who have a strongly matching donor.

An alternative is to obtain blood from patient, and, in the laboratory, use gene therapy involving a form of retrovirus to take the normal gene into the cells to correct the defect. The patients are then given back the genetically changed back.

This approach has been successful in a number of diseases, including who had Wiskott-Aldrich Syndrome. However, over the long term, some patients with , including those with Wiskott-Aldrich Syndrome, developed .

Researchers believe the used to take the gene into the cell inserted itself next to a oncogene in the DNA, turning it on and causing the cancers.

In this new research, the team used a partially inactivated to take the normal gene into the cell, while reducing the risk of the gene inserting next to a cancer-promoting gene.

The video will load shortly
This videoclip explains the mechanisms of the gene therapy used by researchers at San Raffaele Telethon Institute for Gene Therapy, in Milan. Credit: San Raffaele Telethon Institute for Gene Therapy (TIGET)

In these cases for whom there was no matching donor, the researchers led by Alessandro Aiuti of San Raffaele Telethon Institute for Gene Therapy in Milan, Italy; and including Dr. Jordan Orange, professor of pediatrics—rheumatology and Pinaki Banerjee, assistant professor of pediatrics – human immunology at BCM and Texas Children's, took the patients' own blood stem cells and, in the laboratory, used the lentiviral vector combined with the normal WASP gene to correct the genetic defect in the blood. After a special treatment to eliminate their defective immune system, they received their own blood cells that had been altered to contain the normal WASP gene.

After 20 to 30 months, the three children showed significant improvement. New blood cells had the corrected WASP gene.

Orange referred one of the patients for treatment and saw one of them at a recent meeting. He and Banerjee contributed to the analysis of the gene corrected patient cells at the laboratory level using highly quantitative high-resolution imaging Orange maintains a high-and super resolution imaging facility in the Center for Human Immunobiology at Texas Children's Hospital.

Explore further: UCLA stem cell gene therapy for sickle cell disease advances toward clinical trials

More information: "Lentiviral Hematopoietic Stem Cell Gene Therapy Benefits Metachromatic Leukodystrophy," by A. Biffi et al Science Express, 2013.

Related Stories

UCLA stem cell gene therapy for sickle cell disease advances toward clinical trials

July 1, 2013
Researchers at UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have successfully established the foundation for using hematopoietic (blood-producing) stem cells from the bone marrow of patients ...

Gene therapy can correct forms of severe combined immunodeficiency

May 24, 2012
Severe combined immunodeficiency is defect in the immune system that results in a loss of the adaptive immune cells known as B cells and T cells. Mutations in several different genes can lead to the development of severe ...

Novel therapy improves immune function in teen with rare disease

April 14, 2011
In a novel approach that works around the gene defect in Wiskott-Aldrich syndrome, an inherited immune deficiency disorder, researchers used an alternative cell signaling pathway to significantly improve immune function in ...

New findings may help overcome hurdle to successful bone marrow transplantation

May 28, 2013
Blood diseases such as leukemia, multiple myeloma, and myelodysplasia can develop from abnormal bone marrow cells and a dysfunctional bone marrow microenvironment that surrounds these cells. Until now, researchers have been ...

Targeting errant immune system enzyme kills myelodysplastic cells

July 8, 2013
Scientists have successfully targeted a malfunctioning immune system enzyme to kill diseased cells from patients with myelodysplastic syndrome (MDS)—a blood disorder and precursor to leukemia.

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.