Gold nanofibers in engineered heart tissue can enhance electrical signalling, researchers find

July 17, 2013, Tel Aviv University

Heart tissue sustains irreparable damage in the wake of a heart attack. Because cells in the heart cannot multiply and the cardiac muscle contains few stem cells, the tissue is unable to repair itself—it becomes fibrotic and cannot contract properly.

In their search for innovative methods to restore heart function, scientists have been exploring cardiac "patches" that could be transplanted into the body to replace damaged . Now, in his Tissue Engineering and Regenerative Medicine Laboratory, Dr. Tal Dvir and his PhD student Michal Shevach of Tel Aviv University's Department of Molecular Microbiology and Biotechnology and the Center for Nanoscience and Nanotechnology, together with their colleagues are literally setting a gold standard in cardiac tissue engineering.

To meet one of the biggest challenges in the development of cardiac patches—ensuring that engineered tissue can mimic the heart's coordinated electrical system, which controls heartbeat and rhythm—they integrated with made of gold particles to form functional engineered tissues. Their goal is to optimize electrical signalling between cells.

Gold has been found to increase the connectivity of biomaterials, explains Dr. Dvir. With the addition of the , cardiac tissues contract much faster and stronger as a whole, he reports, making them more viable for transplants. The research was recently published in the Journal of Materials Chemistry B.

Lending nature a helping hand

On their surface, contain proteins that are responsible for transferring . But the process of tissue engineering itself leads to the loss of these proteins. And while the cells will start to produce them again naturally, says Dr. Dvir, they take time to develop—time which a patient may not have. Gold nanofibers can fill the role of electrical connectors until the cells are able to produce their own connectors once more.

New tissues are created by placing cells taken from patients or animals onto a three-dimensional scaffolding made of biomaterials – any matter or surface that interacts with biological systems – which organize the cells into the proper formation as they grow. Dr. Dvir and his team used various chemical and physical processes to integrate gold nanoparticles into their scaffolds. The cells then interacted with each other through these gold nanoparticles.

The researchers used a scanning electron microscope and various measures of electrical activity in order to observe the nanoparticles on the fibers and check conductivity. Cells placed on the gold-embedded scaffolding had significantly stronger contractions compared to those on a scaffolding without gold. Importantly, the cells contracted in unison, demonstrating effective electrical signalling between them.

A golden opportunity

Because 50 percent of heart attack victims die within five years of their initial attack, new treatment options are sorely needed. A functioning, transplantable tissue could not only save lives, but improve a patient's quality of life overall.

Having demonstrated the electrical signalling capability of these gold infused cardiac patches, Dr. Dvir will next evaluate their potential to improve function after heart attack through pre-clinical tests in the lab and, eventually, clinical trials with patients. He says that the ideal method would be to use a patient's own cells when building the new tissue, therefore avoiding the risk of rejection.

Explore further: Researchers devise method for growing 3-D heart tissue

Related Stories

Researchers devise method for growing 3-D heart tissue

July 17, 2013
(Medical Xpress)—Researchers at MIT and Charles Stark Draper Laboratory have developed a method of growing living 3-D tissue using a modified version of a machine normally used to build integrated circuits. In their paper ...

Scientists build a living patch for damaged hearts

May 6, 2013
Duke University biomedical engineers have grown three-dimensional human heart muscle that acts just like natural tissue. This advancement could be important in treating heart attack patients or in serving as a platform for ...

A heart of gold: Better tissue repair after heart attack (Update)

September 25, 2011
A team of researchers at MIT and Children’s Hospital Boston has built cardiac patches studded with tiny gold wires that could be used to create pieces of tissue whose cells all beat in time, mimicking the dynamics of ...

Study shows amniotic fluid stem cells, heart cells pass signals without touching

May 2, 2013
Stem cells drawn from amniotic fluid show promise for tissue engineering, but it's important to know what they can and cannot do. A new study by researchers at Rice University and Texas Children's Hospital has shown that ...

New 'biowire' technology matures human heart by mimicking fetal heartrate

June 24, 2013
A new method of maturing human heart cells that simulates the natural growth environment of heart cells while applying electrical pulses to mimic the heart rate of fetal humans has led researchers at the University of Toronto ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.