When injected as a hydrogel rather than in solution, an anticancer protein treats liver tumors more effectively

July 3, 2013, Agency for Science, Technology and Research (A*STAR), Singapore
Bioengineering: Greater anticancer potency with less risk
A scanning electron microscope image of the injectable hydrogel containing interferon-α2a. Credit: 2013 A*STAR Institute of Bioengineering and Nanotechnology

Proteins and other therapeutic compounds injected directly into the blood stream tend to be broken down rapidly by the immune system. Now, researchers in Singapore have demonstrated in mice that the anticancer protein, interferon-α2a (IFN-α2a), can be delivered more effectively to liver tumors when incorporated into an injectable hydrogel.

Motoichi Kurisawa and co-workers at the A*STAR Institute of Bioengineering and Nanotechnology say their work indicates that hydrogels can protect therapeutic proteins from attack while releasing them in a controlled manner. As a result, more of the accumulates in tumors, and patients are at lower risk of side effects. "Our hydrogel system can also be developed to incorporate other potent drugs, proteins or small to achieve controlled release of therapeutics for various diseases," Kurisawa says.

Hydrogels first attracted the interest of medical researchers because the large amount of water they contain provides an environment that prevents proteins from denaturing or losing their shape. The injectable hydrogel developed by Kurisawa and co-workers is composed of a substance known as a hyaluronic acid–tyramine conjugate. The linkage reaction to form the gel is catalyzed by , the level of which controls the stiffness of the gel, and horseradish peroxidase, which can tune the rate of gelation.

Kurisawa and co-workers previously demonstrated that proteins such as lysozyme and ?-amylase could be incorporated and released by the hydrogel. Their more recent in vitro work with IFN- ?2a showed that the gel remained unaffected after incorporating the protein, and that the protein was released via diffusion. Importantly, the IFN-?2a released from the gel could inhibit the proliferation of liver and induce apoptosis, or ''.

In live mice, the injected hydrogel delivered up to three times as much IFN-?2a to liver tumor sites compared to direct injection in solution. The hydrogel treatment was also more effective: the average size of the tumors in mice injected with the hydrogel reduced significantly, whereas those in mice injected with IFN-?2a in solution remained the same. Cells in the tumors in hydrogel-treated mice also showed a decrease in proliferation and an increase in apoptosis. In addition, the hydrogel-delivered IFN-?2a inhibited the development of nutritive blood vessels in these mice.

"We are now planning to develop another hydrogel system to enhance the half-life of in the body even more," Kurisawa says. "And we are modifying our current hydrogel system to allow hepatitis treatment through the sustained release of interferon."

Explore further: New light-controlled gel makes big strides in soft robotics (w/ Video)

More information: Xu, K., et al. Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-?2a for liver cancer therapy. Journal of Controlled Release 166, 203–210 (2013). dx.doi.org/10.1016/j.jconrel.2013.01.008

Lee, F., Chung, J. E. & Kurisawa, M. An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. Journal of Controlled Release 134, 186–193 (2009). www.sciencedirect.com/science/ … ii/S0168365908007773

Related Stories

New light-controlled gel makes big strides in soft robotics (w/ Video)

May 29, 2013
(Phys.org) —Inspired by the way plants grow toward light sources, a phenomenon known as phototropism, bioengineers from the University of California, Berkeley have created a hydrogel that could be manipulated by light.

New injectable hydrogel encourages regeneration, improves functionality after heart attack

February 20, 2013
University of California, San Diego bioengineers have demonstrated in a study in pigs that a new injectable hydrogel can repair damage from heart attacks, help the heart grow new tissue and blood vessels, and get the heart ...

Can a contact lens help treat glaucoma?

June 28, 2013
While an undergraduate in biochemistry at McMaster, Michelle Fernandes worked as a researcher for a biotech company. Now a master's candidate in chemical engineering, she credits that co-op work experience with sparking her ...

New technology delivers sustained release of drugs for up to six months

August 13, 2012
A new technology which delivers sustained release of therapeutics for up to six months could be used in conditions which require routine injections, including diabetes, certain forms of cancer and potentially HIV/AIDS.

Recommended for you

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

Gene mutation found to cause macrocephaly and intellectual deficits

November 13, 2018
The absence of one copy of a single gene in the brain causes a rare, as-yet-unnamed neurological disorder, according to new research that builds on decades of work by a University at Buffalo biochemist and his colleagues.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.