Key molecular pathways leading to Alzheimer's identified

July 24, 2013, Columbia University Medical Center
Key molecular pathways leading to Alzheimer's identified
This diagram shows the overlap of brain gene expression changes in unaffected individuals who carry the APOE4 high-risk variant, unaffected individuals over age 85, and patients with late-onset Alzheimer's disease (LOAD). Credit: Dr. Asa Abeliovich, Columbia University's Taub Institute

Key molecular pathways that ultimately lead to late-onset Alzheimer's disease, the most common form of the disorder, have been identified by researchers at Columbia University Medical Center (CUMC). The study, which used a combination of systems biology and cell biology tools, presents a new approach to Alzheimer's disease research and highlights several new potential drug targets. The paper was published today in the journal Nature.

Much of what is known about Alzheimer's comes from laboratory studies of rare, early-onset, familial (inherited) forms of the disease. "Such studies have provided important clues as to the underlying disease process, but it's unclear how these rare familial forms of Alzheimer's relate to the common form of the disease," said study leader Asa Abeliovich, MD, PhD, associate professor of pathology and and of neurology in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain at CUMC. "Most important, dozens of drugs that 'work' in mouse models of familial disease have ultimately failed when tested in patients with late-onset Alzheimer's. This has driven us, and other laboratories, to pursue mechanisms of the common form of the disease."

Non-familial Alzheimer's is complex; it is thought to be caused by a combination of genetic and environmental risk factors, each having a modest effect individually. Using so-called genome-wide association studies (GWAS), prior reports have identified a handful of common genetic variants that increase the likelihood of Alzheimer's. A key goal has been to understand how such common genetic variants function to impact the likelihood of Alzheimer's.

In the current study, the CUMC researchers identified key that link such to Alzheimer's disease. The work combined cell biology studies with systems biology tools, which are based on computational analysis of the complex network of changes in the expression of genes in the at-risk .

Key molecular pathways leading to Alzheimer's identified
This schematic shows the overlapping changes in brain gene expression seen in unaffected brain tissue at high risk for Alzheimer's and in full-blown Alzheimer's disease. Credit: Dr. Asa Abeliovich, Columbia University's Taub Institute

More specifically, the researchers first focused on the single most significant genetic factor that puts people at high risk for Alzheimer's, called APOE4 (found in about a third of all individuals). People with one copy of this genetic variant have a three-fold increased risk of developing late-onset Alzheimer's, while those with two copies have a ten-fold increased risk. "In this study," said Dr. Abeliovich, "we initially asked: If we look at autopsy brain tissue from individuals at high risk for Alzheimer's, is there a consistent pattern?"

Surprisingly, even in the absence of Alzheimer's disease, brain tissue from individuals at high risk (who carried APOE4 in their genes) harbored certain changes reminiscent of those seen in full-blown Alzheimer's disease," said Dr. Abeliovich. "We therefore focused on trying to understand these changes, which seem to put people at risk. The brain changes we considered were based on 'transcriptomics'—a broad molecular survey of the expression levels of the thousands of genes expressed in brain."

Using the network analysis tools mentioned above, the researchers then identified a dozen candidate "master regulator" factors that link APOE4 to the cascade of destructive events that culminates in Alzheimer's dementia. Subsequent cell biology studies revealed that a number of these master regulators are involved in the processing and trafficking of amyloid precursor protein (APP) within brain neurons. APP gives rise to amyloid beta, the protein that accumulates in the brain cells of patients with Alzheimer's. In sum, the work ultimately connected the dots between a common genetic factor that puts individuals at high risk for Alzheimer's, APOE4, and the disease pathology.

Among the candidate "master regulators" identified, the team further analyzed two genes, SV2A and RFN219. "We were particularly interested in SV2A, as it is the target of a commonly used anti-epileptic drug, levetiracetam. This suggested a therapeutic strategy. But more research is needed before we can develop clinical trials of levetiracetam for patients with signs of late-onset Alzheimer's disease."

Key molecular pathways leading to Alzheimer's identified
This shows images of human neurons, generated by directed conversion of human skin fibroblasts and treated with a compound aimed at suppressing Alzheimer's changes. Credit: Dr. Asa Abeliovich, Columbia University's Taub Institute

The researchers evaluated the role of SV2A, using human-induced neurons that carry the APOE4 genetic variant. (The neurons were generated by directed conversion of skin fibroblasts from individuals at high risk for Alzheimer's, using a technology developed in the Abeliovich laboratory.) Treating neurons that harbor the APOE4 at-risk genetic variant with levetiracetam (which inhibits SV2A) led to reduced production of amyloid beta. The study also showed that RFN219 appears to play a role in APP-processing in cells with the APOE4 variant.

"Our findings suggest that both SV2A and RFN219 are candidate ," said Dr. Abeliovich. "What's exciting to us is that these approaches may play a role in the development of drugs for the common non-familial form of Alzheimer's . This has been an enormous challenge."

Explore further: Study points to possible cause of, and treatment for, non-familial Parkinson's

More information: Nature DOI: 10.1038/nature12415

Related Stories

Study points to possible cause of, and treatment for, non-familial Parkinson's

February 6, 2013
Columbia University Medical Center (CUMC) researchers have identified a protein trafficking defect within brain cells that may underlie common non-familial forms of Parkinson's disease. The defect is at a point of convergence ...

Gene discovery offers new path for Alzheimer's research

July 9, 2013
A new gene variant has been linked to Alzheimer's disease, and this association is strongest among elderly blacks.

Highest risk Alzheimer's genetic carriers take positive steps after learning risk status

July 16, 2013
People who found out they carried an uncommon genetic risk for Alzheimer's disease did not experience more anxiety, depression or distress than non-carriers, and were more active in efforts to reduce their risk of Alzheimer's ...

New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

June 19, 2013
For years, Alzheimer's researchers have focused on two proteins that accumulate in the brains of people with Alzheimer's and may contribute to the disease: plaques made up of the protein amyloid-beta, and tangles of another ...

Rare genomic mutations found in 10 families with early-onset, familial Alzheimer's disease

June 17, 2013
Although a family history of Alzheimer's disease is a primary risk factor for the devastating neurological disorder, mutations in only three genes – the amyloid precursor protein and presenilins 1 and 2 – have been established ...

Genetic markers ID second Alzheimer's pathway

April 4, 2013
Researchers at Washington University School of Medicine in St. Louis have identified a new set of genetic markers for Alzheimer's that point to a second pathway through which the disease develops.

Recommended for you

Rocky start for Alzheimer's drug research in 2018

January 19, 2018
The year 2018, barely underway, has already dealt a series of disheartening blows to the quest for an Alzheimer's cure.

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.