Laser-controlled molecular switch turns blood clotting on, off on command

Laser-controlled molecular switch turns blood clotting on, off on command
DNA-controlled nanoparticles work as a two-way switch for blood clotting. Credit: Helena de Puig

Researchers have designed tiny, light-controlled gold particles that can release DNA controls to switch blood clotting off and on. The results are reported July 24 in the open access journal PLoS ONE by Kimberly Hamad-Schifferli and colleagues from the Massachusetts Institute of Technology.

The two-way switch for blood clotting relies on the ability of two to selectively release different DNA molecules from their surface under different wavelengths of . When stimulated by one wavelength, one nanorod releases a piece of DNA that binds the blood protein thrombin and blocks clot formation. When the complementary DNA piece is released from the other nanorod, it acts as an antidote and releases thrombin, restoring clotting activity.

Natural blood clotting is precisely synchronized to occur at the right time and place. Wound healing, surgery and other conditions require manipulation of this process, typically through the use of anticoagulants like heparin or warfarin. However, these drugs are inherently one-sided as they can only block clotting, and reversing their effects depends on removing them from the bloodstream. The methods described in this research open up new possibilities for more precise, selective control of the blood clotting process during therapy.


Explore further

A tick's spit leads to an entire lesson in blood clotting

More information: PLoS ONE 8(7): e68511. doi:10.1371/journal.pone.0068511
Journal information: PLoS ONE

Citation: Laser-controlled molecular switch turns blood clotting on, off on command (2013, July 24) retrieved 23 October 2019 from https://medicalxpress.com/news/2013-07-laser-controlled-molecular-blood-clotting.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more