The naked mole-rat's secret to staying cancer free

July 31, 2013

A team of researchers from the University of Rochester (NY) and the University of Haifa discovered the naked mole rat's unique mechanism to staying cancer free- a super sugar called high-molecular-mass Hyaluronan (HMM-HA). When secreted by the naked mole rat's cells, this molecule prevents cells from overcrowding and forming tumors. Researchers now say using naked mole-rat HMM-HA in the clinic could open up new avenues for cancer prevention and life extension in humans.

Mice and rats have long since been a standard for , mainly due to their short lifespan of four years on average and high incidence of cancer. Naked mole rats however, are a mystery among mammals. This social tiny African subterranean rodent has a maximum lifespan exceeding 30 years and most surprisingly, is cancer-resistant. The fact that so far, not a single incident of cancer has been detected makes the naked mole rat a fitting model for finding novel ways to fight cancer.

Recently, a team of researchers from the University of Rochester in New York and the University of Haifa found the naked mole rat's unique mechanism to staying cancer free- a super sugar called high-molecular-mass Hyaluronan (HMM-HA). They discovered that when secreted from the naked mole rat's cells, HMM-HA prevents cells from overcrowding and forming tumors. "Contact inhibition, a powerful anticancer mechanism, discovered by the Rochester team, arresting cell growth when cells come into contact with each other, is lost in ", explains Prof. Eviatar Nevo, from the Institute of Evolution at the University of Haifa, "The experiments showed that when HMM-HA was removed from naked mole rat cells, they became susceptible to tumors and lost their contact inhibition".

HMM-HA is a form of Hyaluronan- a long sugar polymer, naturally present as a lubricant in the of the human body. It is commonly used in the treatment of arthritis or in anti-wrinkle . According to the current results, the naked mole rat cells secrete extremely high-molecular mass HA, which is over five times larger than human or mouse HA. This high- HA accumulates abundantly in naked mole rat tissues, owing to a more robust synthesis by a protein called HAS2 and a decreased activity of HA-degrading enzymes. When researchers compared the Has2 gene between the naked mole rat and other mammals, they discovered that two unique amino acids, (asparagines), that are 100% conserved among mammals, were replaced by two other amino acids (serines), in the naked mole rat. These unique amino acid changes may be responsible for the high processivity of the naked mole rat HAS2 protein- in charge of HA synthesis. The naked mole rat cells display a two-fold higher affinity to HA than mouse or human cells, contributing to the higher sensitivity of naked mole rat cells to HA signaling. Remarkably, explains Professor Nevo, "the cells of the Israeli solitary blind , Spalax, which is phylogenetically closer to mice and rats than to naked mole rats, also secreted HMM-HA. This highlights a parallel evolution in unrelated subterranean mammals, presumably a shared adaptation to life underground".

The researchers speculate that naked mole rats evolved higher concentrations of HA in the skin to provide the skin elasticity needed for life in underground tunnels. So far, experiments in human cells have been very limited. However, there has been some evidence showing there is reason for hope. In one of their experiments, the researchers noticed that when HAS2 synthesis protein was overexpressed in human cell tissues, the cells began secreting HMM-HA. This opens new avenues for and life extension in human medicine.

Explore further: Researchers discover how mole rat wards off cancer

Related Stories

Researchers discover how mole rat wards off cancer

November 5, 2012
Biologists at the University of Rochester have determined how blind mole rats fight off cancer—and the mechanism differs from what they discovered three years ago in another long-lived and cancer-resistant mole rat species, ...

Scientists identify genes that may signal long life in naked mole-rats

November 3, 2011
Scientists at the University of Liverpool have identified high levels of a number of genes in the naked mole-rat that may suggest why they live longer than other rodents and demonstrate resistance to age-related diseases.

Scientists find differences in naked mole rat's protein disposers

May 11, 2012
The naked mole rat, a curiously strange, hairless rodent, lives many years longer than any other mouse or rat. Scientists at The University of Texas Health Science Center San Antonio's Barshop Institute of Longevity and Aging ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.