Team generates long-lasting blood vessels from reprogrammed human cells

July 15, 2013

Massachusetts General Hospital (MGH) researchers have used vascular precursor cells derived from human induced pluripotent stem cells (iPSCs) to generate, in an animal model, functional blood vessels that lasted as long as nine months. In their report being published in PNAS Early Edition, the investigators describe using iPSCs – reprogrammed adult cells that have many of the characteristics of embryonic stem cells – from both healthy adults and from individuals with type 1 diabetes to generate blood vessels on the outer surface of the brain or under the skin of mice.

"The discovery of ways to bring back to a 'stem-like' state that can differentiate into many different types of tissue has brought enormous potential to the field of cell-based regenerative medicine, but the challenge of deriving functional cells from these iPSCs still remains," says Rakesh Jain, PhD, director of the Steele Laboratory for Tumor Biology at MGH and co-senior author of the study. "Our team has developed an efficient method to generate vascular precursor cells from human iPSCs and used them to create networks of engineered in living mice."

The ability to regenerate or repair blood vessels could make a crucial difference in the treatment of cardiovascular disease—which continues to be the number one cause of death in the U.S.—and other conditions caused by , such as the vascular complications of diabetes. In addition, providing a vascular supply to newly-generated tissue remains one of the greatest barriers facing efforts to build solid organs through tissue engineering.

Several previous studies have generated from iPSCs the types of cells required to build blood vessels— that line vessels and that provide structural support—but those cells could not form long-lasting vessels once introduced into animal models. "The biggest challenge we faced during the early phase of this project was establishing a reliable protocol to generate endothelial cell lines that produced great quantities of precursor cells that could generate strong, durable blood vessels," says co-senior author Dai Fukumura, MD, PhD, also of the Steele Lab.

The MGH team adapted a method originally used to derive endothelial cells from human (hESCs). But while that method used a single protein marker to identify vascular progenitors, the researchers sorted out iPSC-derived cells that expressed not only that protein but also two other protein markers of vascular potential. They then expanded that population using a culture system that team members had previously developed to differentiate endothelial cells from hESCs and confirmed that only iPSC-derived cells expressing all three markers generated endothelial cells with the full potential of forming blood vessels.

To test the capacity of those cells to generate functional blood vessels, they implanted onto the surface of the brains of mice a combination of the iPSC-derived endothelial expressing the three markers with the mesenchymal precursors that generate essential structural cells. Within two weeks, the implanted cells had formed networks of blood-perfused vessels that appeared to function as well as adjacent natural vessels and continued to function for as long as 280 days in the living animals. While implantation of the combined precursor populations under the skin of the animals also generated functional blood vessels, it required implantation of five times more cells, and the vessels were short-lived, an observation consistent with the team's previous studies of vessel generation in these two locations.

Because patients with (T1D), which can damage blood vessels, could benefit from the ability to make new blood vessels, the researchers wanted to determine whether iPSCs derived from the cells of such patients could help generate functional blood vessels. As with cells from healthy individuals, precursors derived from T1D-iPSCs were able to generate functional, long-lasting blood vessels. However, the researchers note, different lines of the T1D-iPSCs – including different lines derived from the same patient – showed differences in cell-generating potential, indicating the need to better understand the underlying mechanisms.

"The potential applications of iPSC-generated blood vessels are broad – from repairing damaged vessels supplying the heart or brain to preventing the need to amputate limbs because of the vascular complication of diabetes," says co-lead author Rekha Samuel, MD, of the Steele Laboratory, now at the Christian Medical College, Vellore, India. "But first we need to deal with such challenges as the variability of iPSC lines and the long-term safety issues involved in the use of these , which are being addressed by researchers around the world. We also need better ways of engineering the specific type of endothelial cell needed for specific organs and functions."

Explore further: Researchers discover new blood vessel-generating cell with therapeutic potential

More information: Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells , PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1310675110

Related Stories

Researchers discover new blood vessel-generating cell with therapeutic potential

October 16, 2012
Researchers at the University of Helsinki believe they have discovered stem cells that play a decisive role in the growth of new blood vessels. If researchers learn to isolate and efficiently produce these stem cells found ...

Blood vessel forming potential of stem cells from human placenta and umbilical cord blood

July 19, 2012
A study comparing whether endothelial colony-forming cells (ECFCs) derived from human placenta or those derived from human umbilical cord blood are more proliferative and better for forming new blood vessels has found that ...

Team discovers new liver cell for cellular therapy to aid in liver regeneration

June 6, 2013
Liver transplantation is the mainstay of treatment for patients with end-stage liver disease, the 12th leading cause of death in the United States, but new research from the Icahn School of Medicine at Mount Sinai, published ...

Cholesterol sets off chaotic blood vessel growth

May 29, 2013
A study at the University of California, San Diego School of Medicine identified a protein that is responsible for regulating blood vessel growth by mediating the efficient removal of cholesterol from the cells. Unregulated ...

Adult stem cells from liposuction used to create blood vessels in the lab

July 25, 2012
Adult stem cells extracted during liposuction can be used to grow healthy new small-diameter blood vessels for use in heart bypass surgery and other procedures, according to new research presented at the American Heart Association's ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.