A new tool for brain research

July 31, 2013, University of Nottingham
A new tool for brain research

Physicists and neuroscientists from The University of Nottingham and University of Birmingham have unlocked one of the mysteries of the human brain, thanks to new research using functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG).

The work will enable to map a kind of that up to now could not be studied, allowing a more accurate exploration of how both healthy and diseased brains work.

Functional MRI is commonly used to study how the brain works, by providing spatial maps of where in the brain , such as pictures and sounds, are processed. The fMRI scan does this by detecting indirect changes in the brain's blood flow in response to changes in electrical signalling during the stimulus.

Combining techniques

A signal change that happens after the stimulus has stopped is also observed with the fMRI scan. This is called the post-stimulus signal and up until now it has not been used to study how the brain works because its origin was uncertain.

In novel experiments, the research team has now combined fMRI techniques with EEG, which measures electrical activity in the brain, to show that the post-stimulus signal also actually reflects changes in brain signalling.

18 healthy volunteers were monitored by using EEG to measure the generated by their brains' neurons (the signalling cells) while simultaneously recording fMRI measurements. A stimulus of was used to activate the part of the brain that controls movement in the right thumb.

The scientists then compared the EEG and fMRI signals and found that they both vary in the same way after the stimulus stops. This provides compelling evidence that the post-stimulus fMRI signal is a measure of rather than just changes in the brain's blood flow. Curiously, the team also found the post-stimulus fMRI signal was not consistent, even though the stimulus input to the brain was the same each time. This natural variability in the brain response was also reflected by the EEG activity and the researchers suggest that this signal might help the brain make the transition from processing stimuli back to their internal thoughts in different ways.

New window

Dr Karen Mullinger from The University of Nottingham's Sir Peter Mansfield Magnetic Resonance Centre said: "This work opens a new window of time in the fMRI signal in which we can look at what the brain is doing. It may also open up new research avenues in exploring the function of the healthy brain and the study of neurological diseases."

Dr Stephen Mayhew from Birmingham University Imaging Centre said "We do not know what the exact role of the post-stimulus activity is or why this response is not always consistent when the stimulus input to the brain is the same. We have already secured funding through the Birmingham-Nottingham Strategic Collaboration Fund to continue this research into further understanding of function using combinations of neuroimaging methods."

Director of the Sir Peter Mansfield Magnetic Resonance Centre, Professor Peter Morris, said: "Functional is the main tool available to cognitive neuroscientists for the investigation of human brain function. The demonstration in this paper, that the secondary fMRI response (the post-stimulus undershoot) is not simply a passive blood flow response, but is directly related to synchronous neural activity, as measured with EEG, heralds an exciting new chapter in our understanding of the workings of the human mind."

The work has been funded by the Medical Research Council (MRC), Engineering and Physical Science Research Council (EPSRC), The University of Nottingham Anne McLaren Fellowships and University of Birmingham Fellowship and is published in the Proceedings of the National Academy of Sciences (PNAS).

The full paper, 'Post-stimulus undershoots in BOLD and CBF fMRI responses are modulated by post-stimulus neuronal activity' with a manuscript tracking number of 2012-21287RR is available now online.

Explore further: New imaging techniques used to help patients suffering from epilepsy

More information: www.pnas.org/content/early/201 … /1221287110.abstract

Related Stories

New imaging techniques used to help patients suffering from epilepsy

May 23, 2013
New techniques in imaging of brain activity developed by Jean Gotman, from McGill University's Montreal Neurological Institute, and his colleagues lead to improved treatment of patients suffering from epilepsy. The combination ...

Reward linked to image is enough to activate brain's visual cortex

March 21, 2013
Once rhesus monkeys learn to associate a picture with a reward, the reward by itself becomes enough to alter the activity in the monkeys' visual cortex. This finding was made by neurophysiologists Wim Vanduffel and John Arsenault ...

Non-invasive mapping helps to localize language centers before brain surgery

April 8, 2013
A new functional magnetic resonance imaging (fMRI) technique may provide neurosurgeons with a non-invasive tool to help in mapping critical areas of the brain before surgery, reports a study in the April issue of Neurosurgery, ...

Validating maps of the brain's resting state

June 19, 2013
Kick back and shut your eyes. Now stop thinking. You have just put your brain into what neuroscientists call its resting state. What the brain is doing when an individual is not focused on the outside world has become the ...

Remixed brain waves reveal soundtrack of the human brain

November 14, 2012
Scientists have combined and translated two kinds of brain wave recordings into music, transforming one recording (EEG) to create the pitch and duration of a note, and the other (fMRI) to control the intensity of the music. ...

Scientists can now 'see' how different parts of our brain communicate

September 21, 2011
A new technique which lets scientists 'see' our brain waves at work could revolutionise our understanding of the human body’s most complex organ and help transform the lives of people suffering from schizophrenia and ...

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Good spatial memory? You're likely to be good at identifying smells too

October 19, 2018
People who have better spatial memory are also better at identifying odors, according to a study published this week in Nature Communications. The study builds on a recent theory that the main reason that a sense of smell ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Brain cells called astrocytes have unexpected role in brain 'plasticity'

October 18, 2018
When we're born, our brains have a great deal of flexibility. Having this flexibility to grow and change gives the immature brain the ability to adapt to new experiences and organize its interconnecting web of neural circuits. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.