Researchers uncover how a potent compound kills prostate cancer cells

July 30, 2013

One major hallmark of cancer cells is their ability to survive under stressful conditions. A new study spearheaded by researchers at Sanford-Burnham Medical Research Institute reveals how a promising anticancer compound called SMIP004 specifically kills prostate cancer cells by compromising their ability to withstand environmental stress. The study, recently published in Oncotarget, uncovers novel mechanisms of anticancer activity and could lead to the development of more effective therapies for advanced and hard-to-treat forms of prostate cancer, as well as other types of cancer.

Prostate cancer is the second most common cancer and the second leading cause of cancer-related death among men in the United States. One for these patients is castration—the chemical or surgical removal of the testes—which reduces the production of the testosterone. This strategy works because , at least initially, depend on testosterone for their growth and survival. But many patients eventually develop castration-resistant prostate cancer, in which the cancer cells adapt and become insensitive to hormone deprivation therapy.

"For advanced prostate cancer—castration-resistant prostate cancer in particular—when the cancer recurs, the only therapy is Taxol, which will prolong life for only a couple of months," said senior study author Dieter Wolf, M.D., director of the National Cancer Institute-designated Cancer Center proteomics facility at Sanford-Burnham. "There's good potential that our compound could become a novel, much-needed therapy for castration-resistant prostate cancer."

New compound, new mechanisms

In a previous study, Wolf and his team identified SMIP004 as a promising when they screened for compounds that specifically kill prostate cancer cells while sparing normal cells. But until now, exactly how SMIP004 works was unknown.

In the new study, the researchers found that SMIP004 causes cancer cells to die by interfering with the functioning of mitochondria—structures within cells that are responsible for generating energy and controlling cell growth and death. In a process known as oxidative stress, harmful molecules called reactive oxygen species (ROS) built up within mitochondria, causing the cells to stop replicating and to start dying. Wolf and his team pinpointed the exact molecular signaling pathways underlying SMIP004's effects and identified ROS-mediated activation of the unfolded protein response as the trigger of cancer-cell death. "I'm not aware of any approved drugs with the mechanism of action we identified," Wolf said.

Through one of the newly identified pathways triggered by oxidative stress, SMIP004 caused a decrease in the number of androgen receptors—proteins within prostate cancer cells that are activated by testosterone. In patients with castration-resistant prostate cancer, cancer cells develop the ability to use low levels of testosterone for survival by increasing the production of androgen receptors. In other words, these cancer cells still depend on androgen receptors for their growth and survival, even though they are less reliant on testosterone itself. "Because SMIP004 acts on the androgen receptor, it is particularly promising for castration-resistant ," Wolf said.

Targeting cancer cells

Moreover, the researchers found that SMIP004 strongly inhibited the growth of prostate and breast cancer in mice, underscoring the compound's potential value in treating a range of cancers. All types of cancer cells are exposed to , including high levels of oxidative stress resulting from the activation of cancer-causing genes. SMIP004 increased mitochondrial ROS levels by 40 percent, which was enough to tip these cells over the edge and cause them to die.

"The compound increases the stress level beyond what a cancer cell can take, whereas normal cells can cope with it because they have a much lower level of oxidative stress to begin with," Wolf said. "So we think that SMIP004 is likely to be harmless to normal cells, but broadly effective against many cells."

Explore further: New medication treats drug-resistant prostate cancer in the laboratory

Related Stories

New medication treats drug-resistant prostate cancer in the laboratory

June 17, 2013
A new drug called pyrvinium pamoate inhibits aggressive forms of prostate cancer that are resistant to standard drugs, according to a study conducted in an animal model. The results will be presented Monday at The Endocrine ...

How some prostate tumors resist treatment—and how it might be fixed

March 18, 2013
Hormonal therapies can help control advanced prostate cancer for a time. However, for most men, at some point their prostate cancer eventually stops responding to further hormonal treatment. This stage of the disease is called ...

Source of tumor growth in aggressive prostate cancer found

June 17, 2013
Researchers have discovered a molecular switch that explains, at least in part, how some fast-growing prostate cancers become resistant to hormone treatment, a new study conducted in human cell cultures and mice finds. The ...

New possibilities for prostate cancer treatment revealed

May 29, 2013
Researchers have identified a sub-group of cells that could contribute to prostate cancer recurrence, opening up new ways to treat the disease, which claims more than 3000 lives a year in Australia.

Researchers identify novel class of drugs for prostate cancers

May 28, 2013
A new study on prostate cancer describes a novel class of drugs developed by UT Southwestern Medical Center researchers that interrupts critical signaling needed for prostate cancer cells to grow.

New direction for prostate cancer research a world first

June 3, 2013
Researchers at the University of Adelaide are spearheading a new direction in prostate cancer research, with the potential for new treatments of the disease.

Recommended for you

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

Suicide molecules kill any cancer cell

October 19, 2017
Small RNA molecules originally developed as a tool to study gene function trigger a mechanism hidden in every cell that forces the cell to commit suicide, reports a new Northwestern Medicine study, the first to identify molecules ...

Fundamental research enhances understanding of major cancer gene

October 19, 2017
New research represents a promising step towards better understanding of a key cancer gene. A long-running collaboration between researchers at the Babraham Institute, Cambridge and the AstraZeneca IMED Biotech Unit reveals ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.