Cancer: Unraveling a mechanism behind cellular proliferation

August 14, 2013 by Lionel Pousaz, Ecole Polytechnique Federale de Lausanne
Cancer cell division. Credit: Creative commons www.nih.gov

A hallmark of cancer is uncontrolled and sustained cell division. One particular overactive protein is implicated in this malfunction. EPFL scientists have discovered a complex mechanism that regulates this protein's activity in healthy cells.

Oncologists have STAT3 in their sights. This protein, which plays a role in cell division, is at the heart of a complex series of reactions within the cell. In many cancers, it is overactive – this generally is a negative element in terms of survival, because cells have a marked tendency to proliferate. EPFL scientists have unraveled the chain of events that trigger or inhibit the activity of the protein in healthy cells. Their discovery, published in the journal Molecular Cell, could lead to the identification of new therapeutic targets.

The process begins when a growth factor binds to located on the . This event triggers the cell to produce the protein STAT2. Curiously, the cell also simultaneously produces an inhibitor, called PIAS, that deactivates the protein, rendering STAT3 completely dormant.

When the inhibitor is inhibited, STAT3 gets going

How is STAT3 activated? The researchers discovered that in certain circumstances a cell regulator, the "," releases an inhibitor – to the inhibitor! When the first inhibitor is inhibited, STAT3 is let loose, which will favor cell division.

"It's only favorable for the cell to divide when all is well," explains EPFL professor Gisou Van der Goot, primary author of the study. "We found that if a cell is stressed, the endoplasmic reticulum doesn't release the inhibitor." In order to neutralize STAT3 in , then, the release of this second inhibitor needs to be prevented.

STAT3 has been the focus of considerable interest by researchers for several years. They know that when the protein is overactive, cancer tends to produce more easily. By recreating the chain of events that produces and regulates the protein, the researchers hope that it will be possible to identify and develop new strategies in the fight against cancer.

Explore further: Researchers design small molecule to disrupt cancer-causing protein

More information: Asvin K.K. Lakkaraju, F. Gisou van der Goot, Calnexin Controls the STAT3-Mediated Transcriptional Response to EGF, Molecular Cell Volume 51, Issue 3, 386-396, 8 August 2013. www.cell.com/molecular-cell/ab … 1097-2765(13)00508-X

Related Stories

Researchers design small molecule to disrupt cancer-causing protein

March 26, 2013
Researchers at Moffitt Cancer Center and colleagues at the University of South Florida have developed a small molecule that inhibits STAT3, a protein that causes cancer. This development could impact the treatment of several ...

New inhibitor blocks the oncogenic protein KRAS

August 9, 2013
One of the major goals in the development of anti-cancer treatments is to find an inhibitor effective against the oncogenic protein known as KRAS. Despite decades of active agent research, efforts to intercede in this protein's ...

Researchers find important 'target' playing role in tobacco-related lung cancers

February 9, 2012
Researchers at Moffitt Cancer Center in Tampa, Fla., have discovered that the immune response regulator IKBKE (serine/threonine kinase) plays two roles in tobacco-related non-small cell lung cancers. Tobacco carcinogens induce ...

Combination drug therapy urged to battle lung cancer

February 2, 2012
Combination drug therapy may be needed to combat non-small cell lung cancer (NSCLC), according to a study by the Translational Genomics Research Institute (TGen) and Van Andel Research Institute (VARI).

Researchers find potential new therapeutic target for treating non-small cell lung cancer

February 15, 2013
Researchers at Moffitt Cancer Center have found a potential targeted therapy for patients with tobacco-associated non-small cell lung cancer. It is based on the newly identified oncogene IKBKE, which helps regulate immune ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.