From harmless colonizers to virulent pathogens: Microbiologists identify what triggers disease

August 6, 2013 by Ellen Goldbaum
Anders Hakansson, assistant professor of microbiology and immunology at University at Buffalo, says this research demonstrates how the mammalian and bacterial kingdoms interact. Credit: Douglas Levere, University at Buffalo

The bacteria Streptococcus pneumoniae harmlessly colonizes the mucous linings of throats and noses in most people, only becoming virulent when they leave those comfortable surroundings and enter the middle ears, lungs or bloodstream. Now, in research published in July in mBio, University at Buffalo researchers reveal how that happens.

"We were asking, what is the mechanism behind what makes us sick?" explains Anders P. Hakansson, PhD, assistant professor of microbiology and immunology in the UB School of Medicine and Biomedical Sciences. "We are looking to find ways to interfere with the transition to disease. Few have looked at the specific mechanism that suddenly makes these bacteria leave the nose where they typically prefer to reside and travel into the lungs or the where they cause disease. If we can understand that process, then maybe we can block it."

Hakansson and his colleagues had previously found that when the colonize the nose, they form sophisticated, highly structured biofilm communities.

In the current study, the research team grew biofilms of pneumococci on top of human epithelial cells, where the bacteria normally grow. They then infected these bacteria with influenza A virus or exposed them to the conditions that typically accompany the flu, including increased temperature to mimic fever, increased concentrations of ATP (the energy molecule in cells), and the stress hormone norepinephrine, released during flu infection.

All three stimuli triggered a sudden release and departure of bacteria from the biofilm in the nose into otherwise normally sterile organs, such as the middle ears and lungs or into the bloodstream. At the same time, the researchers found that the of the bacteria that had dispersed from the biofilms revealed far more .

Hakansson says the research demonstrates how the mammalian and bacterial kingdoms interact. "Humans are the only natural hosts for these bacteria," he explains, "when the viral infection comes in, there is this interkingdom signaling, where the bacteria respond to host molecules. If we can find ways to interrupt that signaling, we might be able to prevent disease."

Explore further: Breast milk protein complex helps reverse antibiotic resistance

Related Stories

Breast milk protein complex helps reverse antibiotic resistance

May 1, 2013
A protein complex found in human breast milk can help reverse the antibiotic resistance of bacterial species that cause dangerous pneumonia and staph infections, according to new University at Buffalo research.

Flu and bacteria: Better prognosis for this potentially fatal combination

April 26, 2013
Scientists from the Max F. Perutz Laboratories (MFPL) of the University of Vienna and the Medical University of Vienna have provided insights into how much harm bacteria can cause to the lung of people having the flu. An ...

Researchers suggest novel prevention of recurrent ear infections

October 30, 2012
Eliminating bacteria's DNA and boosting antimicrobial proteins that already exist may help prevent middle ear infections from reoccurring. These are the findings from a Nationwide Children's Hospital study that examined how ...

Recommended for you

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

New academic study reveals true extent of the link between hard water and eczema

September 21, 2017
Hard water damages our protective skin barrier and could contribute to the development of eczema, a new study has shown.

Exposure to pet and pest allergens during infancy linked to reduced asthma risk

September 19, 2017
Children exposed to high indoor levels of pet or pest allergens during infancy have a lower risk of developing asthma by 7 years of age, new research supported by the National Institutes of Health reveals. The findings, published ...

Cholesterol-like molecules switch off the engine in cancer-targeting 'Natural Killer' cells

September 18, 2017
Scientists have just discovered how the engine that powers cancer-killing cells functions. Crucially, their research also highlights how that engine is fuelled and that cholesterol-like molecules, called oxysterols, act as ...

MicroRNA helps cancer evade immune system

September 18, 2017
The immune system automatically destroys dysfunctional cells such as cancer cells, but cancerous tumors often survive nonetheless. A new study by Salk scientists shows one method by which fast-growing tumors evade anti-tumor ...

'Exciting' discovery on path to develop new type of vaccine to treat global viruses

September 15, 2017
Scientists at the University of Southampton have made a significant discovery in efforts to develop a vaccine against Zika, dengue and Hepatitis C viruses that affect millions of people around the world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.