Multiple genes manage how people taste sweeteners

August 20, 2013

Genetics may play a role in how people's taste receptors send signals, leading to a wide spectrum of taste preferences, according to Penn State food scientists. These varied, genetically influenced responses may mean that food and drink companies will need a range of artificial sweeteners to accommodate different consumer tastes.

"Genetic differences lead to differences in how people respond to tastes of foods," said John Hayes, assistant professor, and director of the sensory evaluation center.

Based on the participants' genetic profile, researchers were able to explain the reactions of subjects in a test when they sampled Acesulfame-K—Ace K—in the laboratory. Ace K is a man-made non-nutritive commonly found in carbonated soft drinks and other products. Non-nutritive sweeteners are sweeteners with minimal or no calories.

While some people find Ace K sweet, others find it both bitter and sweet.

The researchers, who reported their findings in the recent issue of the journal, Chemical Senses, said that variants of two bitter taste —TAS2R9 and TAS2R31—were able to explain some of the differences in Ace K's bitterness.

These two taste receptor genes work independently, but they can combine to form a range of responses, said Alissa Allen, doctoral student in food science, who worked with Hayes.

Humans have 25 bitter-taste receptors and one sweet receptor that act like locks on gates. When molecules fit certain receptors like keys, a signal is sent to the brain, which interprets these signals as tastes—some pleasant and some not so pleasant, Allen said.

In another study recently published in the journal Chemosensory Perception, Allen had 122 participants taste two stevia extracts, RebA—Rebaudioside A—and RebD—Rebaudioside D. Stevia is a South American plant that has served as a sweetener for centuries, according to the researchers. While the plant is becoming more popular as a natural non-nutritive sweetener, consumers have reported of tastes from stevia-based sweeteners, including bitterness.

The researchers found that RebA and RebD bitterness varies greatly across subjects, but this was not related to whether or not participants found Ace K bitter. Likewise, variation in the TAS2R9 and TAS2R31 genes did not predict RebA and RebD bitterness. They also found that of the stevia extracts, the participants considered RebD to be much less bitter than RebA.

While stevia is growing in acceptance as a natural replacement for other sweeteners, manufacturers do not use the whole leaf. Instead, the leaf is ground up and certain parts of it are extracted and blended to make the sweetener.

"Our work suggests ingredient suppliers may want to consider commercializing RebD, as it provides similar sweetness to RebA with much less bitterness," said Hayes.

Hayes also said that researchers are just beginning to understand the molecular basis of taste perception.

"We've known for over 80 years that some people differ in their ability to taste bitterness, but we have only begin to tease apart the molecular basis of these differences in the last decade," Hayes said.

Explore further: Bitter taste receptors for Stevia sweeteners discovered

Related Stories

Bitter taste receptors for Stevia sweeteners discovered

May 31, 2012
Stevia is regarded as a healthy alternative to sugar. Yet there are drawbacks to the Stevia products recently approved as sweeteners by the European Union. One of these is a long-lasting bitter after-taste. Scientists at ...

Improving medicine acceptance in kids: A matter of taste

July 24, 2013
Despite major advances in the pharmaceutical treatment of disease, many children reject medicines due to an aversion to bitter taste. As such, bitterness presents a key obstacle to the acceptance and effectiveness of beneficial ...

Recommended for you

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.