Multiple genes manage how people taste sweeteners

August 20, 2013, Pennsylvania State University

Genetics may play a role in how people's taste receptors send signals, leading to a wide spectrum of taste preferences, according to Penn State food scientists. These varied, genetically influenced responses may mean that food and drink companies will need a range of artificial sweeteners to accommodate different consumer tastes.

"Genetic differences lead to differences in how people respond to tastes of foods," said John Hayes, assistant professor, and director of the sensory evaluation center.

Based on the participants' genetic profile, researchers were able to explain the reactions of subjects in a test when they sampled Acesulfame-K—Ace K—in the laboratory. Ace K is a man-made non-nutritive commonly found in carbonated soft drinks and other products. Non-nutritive sweeteners are sweeteners with minimal or no calories.

While some people find Ace K sweet, others find it both bitter and sweet.

The researchers, who reported their findings in the recent issue of the journal, Chemical Senses, said that variants of two bitter taste —TAS2R9 and TAS2R31—were able to explain some of the differences in Ace K's bitterness.

These two taste receptor genes work independently, but they can combine to form a range of responses, said Alissa Allen, doctoral student in food science, who worked with Hayes.

Humans have 25 bitter-taste receptors and one sweet receptor that act like locks on gates. When molecules fit certain receptors like keys, a signal is sent to the brain, which interprets these signals as tastes—some pleasant and some not so pleasant, Allen said.

In another study recently published in the journal Chemosensory Perception, Allen had 122 participants taste two stevia extracts, RebA—Rebaudioside A—and RebD—Rebaudioside D. Stevia is a South American plant that has served as a sweetener for centuries, according to the researchers. While the plant is becoming more popular as a natural non-nutritive sweetener, consumers have reported of tastes from stevia-based sweeteners, including bitterness.

The researchers found that RebA and RebD bitterness varies greatly across subjects, but this was not related to whether or not participants found Ace K bitter. Likewise, variation in the TAS2R9 and TAS2R31 genes did not predict RebA and RebD bitterness. They also found that of the stevia extracts, the participants considered RebD to be much less bitter than RebA.

While stevia is growing in acceptance as a natural replacement for other sweeteners, manufacturers do not use the whole leaf. Instead, the leaf is ground up and certain parts of it are extracted and blended to make the sweetener.

"Our work suggests ingredient suppliers may want to consider commercializing RebD, as it provides similar sweetness to RebA with much less bitterness," said Hayes.

Hayes also said that researchers are just beginning to understand the molecular basis of taste perception.

"We've known for over 80 years that some people differ in their ability to taste bitterness, but we have only begin to tease apart the molecular basis of these differences in the last decade," Hayes said.

Explore further: Bitter taste receptors for Stevia sweeteners discovered

Related Stories

Bitter taste receptors for Stevia sweeteners discovered

May 31, 2012
Stevia is regarded as a healthy alternative to sugar. Yet there are drawbacks to the Stevia products recently approved as sweeteners by the European Union. One of these is a long-lasting bitter after-taste. Scientists at ...

Improving medicine acceptance in kids: A matter of taste

July 24, 2013
Despite major advances in the pharmaceutical treatment of disease, many children reject medicines due to an aversion to bitter taste. As such, bitterness presents a key obstacle to the acceptance and effectiveness of beneficial ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.