Neuroscientists find a key to reducing forgetting—it's about the network

August 29, 2013, New York University
brain

A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appear in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are to forget newly obtained information.

The study was conducted at New York University by Lila Davachi, an associate professor in NYU's Department of Psychology and Center for Neural Science, and Kaia Vilberg, now a postdoctoral researcher at the University of Texas' Center for Vital Longevity and School of Behavioral and Brain Sciences in Dallas.

"When memories are supported by greater coordination between different parts of the brain, it's a sign that they are going to last longer," explained Davachi.

It is commonly understood that the key to —the cementing of an experience or information in our brain—is signaling from the brain's across different . Moreover, it has been hypothesized, but never proven, that the greater the distribution of signaling, the stronger the memory takes hold in our brain.

In the Neuron study, Davachi and Vilberg sought to determine if there was scientific support for this theory.

To do so, they examined how memories are formed at their earliest stages through a series of experiments over a three-day period.

On day one of the study, the researchers aimed to encode, or create, among the study's subjects. Here, they showed participants a series of images—objects and outdoor scenes, both of which were paired with words. Here, subjects were asked to form an association between the word and image presented on the screen.

On day two, the subjects returned to the lab and completed another round of encoding tasks using new sets of visuals and words. This allowed to the researchers to compare two types of memory: the more consolidated, long duration (LD) memories encoded on day one with the less consolidated, short duration (SD) memories encoded on day two.

After a short break, participants were placed in an MRI machine—in order to monitor neural activity—and viewed the same visual-word pairings they saw on days one and two as well as a new round of visuals paired with words. They then completed a memory test of approximately half of the visual-word pairings they'd seen thus far. On day three, they returned to the lab for a memory test on the remaining visuals.

By testing over multiple days, the researchers were able to isolate memories that declined or were preserved over time and, with it, better understand the neurological factors that contribute to memory preservation.

Their results showed that memories (i.e., the visual-word associations) that were not forgotten were associated with greater coordination between the hippocampus and left perirhinal cortex (LPRC)—two previously linked with memory formation. By contrast, there was notably less connectivity between these regions for visual-word associations that the study's subjects tended to forget.

Moreover, the researchers found that the coordinated brain activity between the hippocampus and the LPRC—but not overall activity in these regions—was related to memory strengthening, arguing for the network's contribution to memory .

"These findings show the brain strengthens memories by distributing them across networks," explained Davachi. "However, this process takes time. Day-old memories show greater coordinated brain activity compared to recent ones. This suggests that coordinated increases with time after a memory is initially formed."

Explore further: How connections in the brain must change to form memories could help to develop artificial cognitive computers

Related Stories

How connections in the brain must change to form memories could help to develop artificial cognitive computers

November 7, 2012
Exactly how memories are stored and accessed in the brain is unclear. Neuroscientists, however, do know that a primitive structure buried in the center of the brain, called the hippocampus, is a pivotal region of memory formation. ...

Neuroscientists show ability to plant false memories

July 25, 2013
The phenomenon of false memory has been well-documented: In many court cases, defendants have been found guilty based on testimony from witnesses and victims who were sure of their recollections, but DNA evidence later overturned ...

Research discovers two opposite ways our brain voluntarily forgets unwanted memories

October 17, 2012
If only there were a way to forget that humiliating faux pas at last night's dinner party. It turns out there's not one, but two opposite ways in which the brain allows us to voluntarily forget unwanted memories, according ...

Long-term memory in the cortex

August 27, 2013
(Medical Xpress)—'Where' and 'how' memories are encoded in a nervous system is one of the most challenging questions in biological research. The formation and recall of associative memories is essential for an independent ...

Negative feedback stabilizes memories

August 28, 2013
(Medical Xpress)—Memories may be maintained in the brain through a mechanism familiar to any engineer—negative and positive feedback loops, according to researchers Sukbin Lim and Mark Goldman at the UC Davis Center for ...

Recommended for you

What prevents remyelination? New stem cell research reveals a critical culprit

December 18, 2018
New research on remyelination, the spontaneous regeneration of the brain's fatty insulator that keeps neurons communicating, could lead to a novel approach to developing treatments for multiple sclerosis (MS) and other inflammatory ...

Gene variant found in brain complicit in MS onset

December 18, 2018
Multiple sclerosis (MS) is an autoimmune disease affecting the function of the central nervous system. Up to now, most of the 230 genetic variants associated with the disease have been linked to changes in immune cells. However, ...

Biologists identify promising drug for ALS treatment

December 18, 2018
A drug typically used to treat hepatitis could slow the progression of ALS, also known as Lou Gehrig's disease, according to new research by University of Alberta scientists.

Communication between neural networks

December 18, 2018
The brain is organized into a super-network of specialized networks of nerve cells. For such a brain architecture to function, these specialized networks – each located in a different brain area – need to be able to communicate ...

Tiny implantable device short-circuits hunger pangs, aids weight loss

December 17, 2018
More than 700 million adults and children worldwide are obese, according to a 2017 study that called the growing number and weight-related health problems a "rising pandemic."

Discovery of a novel way synapses can regulate neuronal circuits

December 17, 2018
The fundamental process of information transfer from neuron to neuron occurs through a relay of electrical and chemical signaling at the synapse, the junction between neurons. Electrical signals, called action potentials, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.