Study yields new strategy against high-risk leukemia

August 29, 2013

August 29, 2013) St. Jude Children's Research Hospital scientists have identified a protein that certain high-risk acute lymphoblastic leukemia (ALL) cells need to survive and have used that knowledge to fashion a more effective method of killing tumor cells. The findings appear in the August 29 edition of the journal Blood.

The work focused on Philadelphia chromosome-positive ALL (Ph-positive ALL), a high-risk cancer that accounts for about 40 percent of ALL in adults and about 5 percent in children. The disease is named for a that brings together pieces of the BCR and ABL genes. That leads to production of the BCR-ABL protein, which fuels the unchecked cell growth that is a hallmark of cancer.

In this study, researchers identified the protein MCL1 as the partner in crime of BCR-ABL. MCL1 is one of several proteins that can block the process of known as apoptosis. The body uses apoptosis to eliminate damaged, dangerous or unneeded cells. The research demonstrates that MCL1 is essential for preventing apoptosis of cells.

Investigators combined drugs that reduce MCL1 levels in leukemia cells with a second drug that targets another protein that inhibits cell death. The pairing increased apoptosis in human leukemia cells growing in the laboratory.

"These findings suggest that disrupting the ability of leukemia cells to produce MCL1 renders those cells vulnerable to other drugs," said corresponding author Joseph Opferman, Ph.D., an associate member of the St. Jude Department of Biochemistry. "That is exciting because we already have drugs like imatinib and other that reduce MCL1 production in , leaving those cells vulnerable to being pushed into death via apoptosis by other drugs already in development."

Tyrosine kinase inhibitors are designed to block the BCR-ABL protein. The drugs have revolutionized treatment of (CML), which strikes adults and includes the same chromosomal rearrangement as Ph-positive ALL. But results of TKI treatment were less dramatic for adults and children with Ph-positive ALL, and drug resistance remains a problem.

For this study, researchers combined one of two tyrosine kinase inhibitors, imatinib or dasatnib, with the experimental drug navitoclax. The latter drug disrupts the ability of the proteins BCL-2 and BCL-XL to protect cancer cells from apoptosis. Along with MCL1, BCL-2 and BCL-XL are members of a family of proteins that regulate apoptosis. MCL1, BCL-2 and BCL-XL work to prevent cell death, even cancer , by blocking the activity of proteins that promote the process.

Since MCL1 is elevated in a number of cancers and is associated with cancer-drug resistance, a similar two-drug approach might also enhance the effectiveness of tyrosine kinase inhibitors for treatment of other cancers. "We are very interested in pursuing this strategy," Opferman said.

Earlier discoveries made by the Opferman laboratory revealed that MCL-1 also protects heart health by preventing loss of heart muscle cells through apoptosis. "Together these findings suggest that MCL1 is a relevant target for cancer treatment, but efforts should focus on diminishing the expression of MCL1, rather than completely eliminating its function," said first author Brian Koss, a staff scientist in Opferman's laboratory.

In this study, the investigators showed that MCL1 was required for cancer cell survival throughout the Ph-positive ALL disease process, beginning when white blood cells known as B lymphocytes were transformed from normal to tumor cells.

Scientists showed that deleting Mcl1 from the of mice blocked cancer's progression and turned the mice into long-term survivors.

Explore further: Protein targeted for cancer drug development is essential for normal heart function

Related Stories

Protein targeted for cancer drug development is essential for normal heart function

July 10, 2013
St. Jude Children's Research Hospital scientists have discovered that a protein used by cancer cells to evade death also plays a vital role in heart health. This dual role complicates efforts to develop cancer drugs that ...

Key protein's newly discovered form and function may provide novel cancer treatment target

April 30, 2012
Research led by St. Jude Children's Research Hospital investigators suggests that safeguarding cell survival and maintaining a balanced immune system is just the start of the myeloid cell leukemia sequence 1 (MCL1) protein's ...

Anchoring ABL for a better fate

August 27, 2013
Chronic Myelogenous Leukemia (CML) is a cancer of the white blood cells that is most commonly found in adults and in the elderly. Its incidence has been estimated to be 1 to 2 in 100,000 people. CML was the first cancer to ...

Target set on cancer gene MCL1

April 16, 2012
A research team pursuing one of the most commonly altered genes in cancer has laid a critical foundation for understanding this gene that could point the way toward developing drugs against it. A recent study of cancer genetics ...

New drug combination therapy developed to treat leukemia

April 17, 2013
A new, pre-clinical study by researchers at Virginia Commonwealth University Massey Cancer Center suggests that a novel drug combination could lead to profound leukemia cell death by disrupting the function of two major pro-survival ...

Study identifies new drug target in deadly form of leukemia

June 3, 2013
A research team led by the Duke-NUS Graduate Medical School (Duke-NUS) in Singapore has identified ways to inhibit the function of a key protein linked to stem cell-like behavior in terminal-stage chronic myeloid leukemia ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.