Genomic test accurately sorts viral vs. bacterial infections

September 18, 2013
A test developed by researchers at Duke Medicine detects a specific genetic "signature" in the host's immune system unique to a viral infection, demonstrating a potential new method for diagnosing the source of illnesses that have long been tough to pinpoint. Credit: Duke Medicine

A blood test developed by researchers at Duke Medicine showed more than 90-percent accuracy in distinguishing between viral and bacterial infections when tested in people with respiratory illnesses.

The test, which detects a specific genetic "signature" that the 's immune system expresses as a response to the virus, demonstrates a potential new method for diagnosing the source of illnesses that have long been tough to pinpoint.

Reported in the Sept. 18, 2013, issue of the journal Science Translational Medicine, the finding moves the technology closer to clinical use, where it could help patients get quicker diagnoses and treatments, while curbing the unnecessary use of antibiotics that don't work on viral infections.

"In instances such as or the corona-virus that has erupted in the Middle East, it's extremely important to diagnose a viral illness far more accurately and speedier than can be done using traditional diagnostics," said co-senior author Geoffrey S. Ginsburg, M.D., Ph.D., director of Genomic Medicine and professor of medicine at Duke University School of Medicine. "Current tests require knowledge of the pathogen to confirm infection, because they are strain-specific. But our test could be used right away when a new, unknown pathogen emerges."

When infected by a virus, a person's immune system responds differently than when fighting a bacterial infection. These differences are evident at the , where certain genes are switched on during a viral attack, creating a fingerprint that broadly identifies the culpable pathogen.

In previous work, the Duke team described the development of a blood test, using a special assay, to identify some 30 genes involved in the immune response to viral infection among volunteers who had agreed to be infected with a series of common upper .

Unlike current tests that rely on evidence of the pathogen in the – requiring knowledge of that particular bug to detect it – the new approach could be used to detect unknown emerging diseases, including potential bioterrorism threats.

"This is important not only in viral pandemics where infection may be caused by unknown viruses but also in routine care where the decision to treat or not with antibiotics is paramount," said lead author Aimee K. Zaas, M.D., MHS, associate professor of infectious diseases and international health at Duke.

The current study was a trial run of the blood test in a "real-world" setting. Among 102 people arriving at a hospital's emergency department with fever, 28 had a viral infection, 39 had a and 35 were healthy controls. Using the test, the Duke researchers were able to accurately classify more than 90 percent of the patients as having viral infection or not.

The assay provided true positive identifications of viral infection in 89 percent of the cases, and correctly ruled out the negative cases 94 percent of the time.

"This work opens new approaches to diagnosis of infectious diseases," said Geoffrey S.F. Ling, M.D., Ph.D., deputy director of the Defense Sciences Office for the Defense Advanced Research Projects Agency (DARPA).

The researchers said larger studies are planned, and additional work is ongoing to trim the amount of time it takes for the test results to be reported. Ginsburg said the test currently takes 12 hours, and analyzes about 30 genes. He said both the time and the number of genes could be pared.

"We were very pleased that the assay could pick out those with viral infection with a high degree of accuracy," Zaas said. "This is perhaps the most important aspect of this effort – the accuracy of the new test in a real-world setting. It is a major step forward in the test becoming a useful diagnostic to help physicians and patients."

Co-senior author Christopher W. Woods, M.D., MPH, associate professor of medicine, pathology and global health at Duke and the Durham VA Medical Center, said the new test, if proven successful in additional studies, could help resolve some of the most pressing issues around infectious diseases.

"One of the big global threats at the moment is the emergence of bacterial resistance, and that is largely driven by overuse of antibiotics," Woods said. "This is a growing public health threat, creating infections that are increasingly difficult to manage. A tool that enables us to accurately identify could curb the indiscriminate and reduce the development of resistant ."

Explore further: In children with fever, researchers distinguish bacterial from viral infections

More information: "A Host-Based RT-PCR Gene Expression Signature to Identify Acute Respiratory Viral Infection," by A.K. Zaas et al Science Translational Medicine, 2013.

Related Stories

In children with fever, researchers distinguish bacterial from viral infections

July 15, 2013
In children with fever but no other symptoms of illness, it is difficult to know whether a child has a viral infection that will resolve on its own or a potentially serious bacterial infection that requires antibiotics.

Measuring genomic response to infection leads to earlier, accurate diagnoses

January 9, 2013
Duke researchers are looking to genomic technologies – not the isolation of bacteria or viruses – to quickly detect and diagnose infectious diseases such as the flu and staph.

Test accurately and swiftly detects most leading causes of bacterial blood stream infection

July 2, 2013
A new automated diagnostic test can quickly and accurately identify most leading causes of Gram-positive bacterial blood stream infections and the presence of three antibiotic resistance genes, according to a new study published ...

Recommended for you

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.