New insights into control of neuronal circuitry could lead to treatments for an inherited motor disorder

September 20, 2013, RIKEN
Figure 1: Mouse Purkinje cells lacking IP3R1 display a higher density and longer length of dendritic spines (right) compared with normal mice (left). Credit: Ref. 1 © 2013 T. Sugawara et al.

The cerebellum is a region of the brain critical for balance, learning of motor skills and coordination of movements. In the outer layer of the cerebellum, individual 'Purkinje' cells integrate inputs from the brain stem and hundreds of thousands of granule cells to produce the cerebellar 'output'. Maintenance of the connections between Purkinje cells and associated parallel fibers is critical for proper cerebellar function, but very little is known about the underlying molecular mechanisms.

A team of researchers led by Katsuhiko Mikoshiba from the RIKEN Brain Science Institute in Wako has now identified a signaling molecule responsible for maintaining the integrity of these in the mature .

The type 1 inositol trisphosphate receptor (IP3R1) is known to be expressed at high levels in Purkinje cells. Mutations in the IP3R1 gene lead to uncoordinated movements, abnormal Purkinje cell structure and impaired signaling between Purkinje cells and parallel fibers in mice, and cause a human disease called spinocerebellar ataxia 15 (SCA15). Mikoshiba and his colleagues investigated the role of IP3R1 in the mature cerebellum by genetically engineering mice specifically lacking the receptor in their Purkinje cells.

The researchers found that the displayed impaired motor skill learning and severely uncoordinated movements, or ataxia, as seen in patients with SCA15. Closer examination of the cerebellum under the microscope also revealed abnormalities in the mice's Purkinje cells. While appearing to develop normally, in the adult animals these cells showed a dramatic increase in the density and length of their dendritic spines—the tiny finger-like protuberances that form connections with other cells (Fig. 1). All of the spines, however, formed fully functional connections with parallel fibers in the adult animals.

Previously, Mikoshiba's group showed that IP3R1 plays a critical role in a process called synaptic plasticity, by which connections between neurons are strengthened or weakened during learning. These new findings show that the receptor is also required for maintaining the proper spatial arrangement of connections in the adult cerebellum.

"Mice lacking IP3R1 specifically in Purkinje cells display ataxia similar to SCA15 patients," says Mikoshiba. He notes that since the abnormal maintenance of Purkinje cell appears to be associated with severe ataxia in the mutant mice, defects in the maintenance of the cerebellar circuit might similarly be involved in SCA15 pathogenesis.

"We are now studying the precise mechanism of how IP3R1 regulates Purkinje cell spine maintenance. This may elucidate SCA15 pathogenesis and lead to the development of new therapies," adds Mikoshiba.

Explore further: Dysfunction in cerebellar Calcium channel causes motor disorders and epilepsy

More information: Sugawara, T., et al.Type 1 inositol trisphosphate receptor regulates cerebellar circuits by maintaining the spine morphology of Purkinje cells in adult mice, The Journal of Neuroscience 33, 12186–12196 (2013).dx.doi.org/10.1523/JNEUROSCI.0545-13.2013

Related Stories

Dysfunction in cerebellar Calcium channel causes motor disorders and epilepsy

March 21, 2013
A dysfunction of a certain Calcium channel, the so called P/Q-type channel, in neurons of the cerebellum is sufficient to cause different motor diseases as well as a special type of epilepsy. This is reported by the research ...

Controlling movements with light

July 20, 2011
German researchers at the Ruhr-Universitaet have succeeded in controlling the activity of certain nerve cells using light, thus influencing the movements of mice. By changing special receptors in nerve cells of the cerebellum ...

Unexpected discovery reveals a new mechanism for how the cerebellum extracts signal from noise

March 21, 2012
Research at the University of Calgary's Hotchkiss Brain Institute (HBI) has demonstrated the novel expression of an ion channel in Purkinje cells – specialized neurons in the cerebellum, the area of the brain responsible ...

Newly understood circuits add finesse to nerve signals

May 27, 2013
(Medical Xpress)—An unusual kind of circuit fine-tunes the brain's control over movement and incoming sensory information, and without relying on conventional nerve pathways, according to a study published this week in ...

Deleting a single gene results in autism-like behavior; immunosuppressant drug prevents symptoms

July 2, 2012
Deleting a single gene in the cerebellum of mice can cause key autistic-like symptoms, researchers have found. They also discovered that rapamycin, a commonly used immunosuppressant drug, prevented these symptoms.

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.