Nontoxic scaffold developed: New skin for chronic wounds

September 2, 2013 by Stefan Kyora
Nontoxic scaffold developed: New skin for chronic wounds
Credit: CTI, Alessandro Della Bella

The concept is amazing: a synthetic cell carrier is populated by skin cells and dissolves simultaneously. In just two years, the Lucerne-based company nolax and Empa have developed this project up to a first proof of concept stage.

Over 50 million people worldwide suffer from chronic wounds. The number is steadily growing. Most frequently affected is the growing group of older people who are weakened by diseases such as diabetes.

In the framework of a CTI project the Lucerne-based company nolax and Empa have taken a major step towards solving this problem. They have developed a cell carrier or 'scaffold' from bio-compatible, degradable that should help wounds to heal. This scaffold – a spongy- like foam made of flexible polyurethane – can be adapted to the exact shape of the wound. Over time, the scaffold should be populated by . At the same time the body breaks down the foam. All that should remain is a newly formed layer of skin. There are already cell scaffolds on the market, but they are made of products of animal origin, which not only makes them expensive, but also carries the risk of transmitting animal diseases. There are no such disadvantages when are used as wound healing support materials.

An experienced team

nolax has decades of experience with synthetic materials for technical and medical applications. In 2009 the Lucerne- based SME had its scaffold concept patented. "However, we needed a partner if we were to move from the idea to the stage," explains nolax's Stephan Häfner. The perfect partner was found in Empa. The project was managed by the research institute's Arie Bruinink, a and toxicologist with a broad experience in cytocompatibility testing.

This expertise was needed. Tests with were designed to improve the and structure of the scaffold to make it nontoxic, create an environment that cells would be willing to populate and ensure that it dissolves completely without side effects.

More than a hundred tests

The tests developed by the Empa team mimicked realistic conditions as far as possible. In a highly complex process, Bruinink's team created three-dimensional cell clusters from human cells and observed whether cells from these clusters were able to colonise the scaffold. "This corresponds to the conditions in a wound much better than the usual tests with single cells," explains Bruinink.

"On the basis of the test results, we continued to adapt the formula and improve the structure of the scaffold," says Stephan Häfner, Project Manager at nolax. Both teams worked tremendously quickly. A total of over a hundred experiments were performed."

The results were finally evaluated in an animal model by Brigitte von Rechenberg and Katja Nuss at the University of Zurich. Arie Bruinink is pleased with the results: "In the animal model the closure of the wound with the scaffold was even better than we had hoped at the start of the project." In addition, there were initial signs that scarring would be reduced.

In parallel to further optimising the , nolax is working on a production concept for the next stage of clinical trials. Andreas Dobmann, deputy project manager at nolax, is expecting great things to come of it: "Besides the treatment of , other fields of application are already emerging."

Explore further: Bioprinting has promising future

Related Stories

Bioprinting has promising future

November 15, 2012
Writing in the journal Science, Professor Derby of The School of Materials, looks at how the concept of using printer technology to build structures in which to grow cells, is helping to regenerate tissue.

Microwave heating improves artificial bone

July 24, 2012
An artificial bone scaffold produced by researchers in South Korea could enhance the treatment of bone damage and defects through bone grafts.

Recommended for you

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.