Giving paralysed people control and independence

September 16, 2013, CORDIS
Giving paralysed people control and independence
Credit: Shutterstock

A device that offers paralysed individuals - including those in the most severe 'locked-in' state - better control and communication has been developed and improved, thanks to a project funded by the European Research Council (ERC).

The ODORSPACE ('Predicting from odorant structure and in the ') project has developed technology that works by measuring in the nose, or sniffing, and converting them into .

Noam Sobel, Professor of Neurobiology at the Weizmann Institute of Science in Israel, received a starting grant from the ERC worth EUR 1.5 million for this project, which ended in 2013.

With an additional ERC 'Proof of Concept' grant of about EUR 150 000 SNIFFCONTROL ('Sniff-Controlled Devices') continued the work, which runs until the end of 2013. Prof. Nobel and his team aim at optimising this technology and investigating its commercial potential.

Most people retain the ability to sniff, even after suffering severe brain damage such as that resulting from a stroke. SNIFFCONTROL, which builds on their previous work, focusses on developing a sniff-controlled device that is both cost-effective and user-friendly.

"Whereas our original version of the device was based on a tube nestled at the opening and connected to a transducer, the current version communicates by Bluetooth rather than a tube," explains Prof. Sobel. "Thus, our current version is more aesthetic."

Sniffing is regulated by the , the tissue at the back of the throat that directs the flow of air through the mouth and nose. The soft palate is controlled by nerves that do not pass through the spinal cord. This means that spinal damage - a common cause of paralysis - does not affect these nerves. Control of the soft palate is similarly unaffected by , unless such damage is located in the specific part of the brain that controls this organ.

"In our ERC starting grant project (ODORSPACE), we uncovered the speed, accuracy, and robustness of human sniffing behaviour," says Sobel. "This led us to hypothesise that we could use sniffs as control signals."

The project team devised a means of enabling patients to dictate text on to a computer screen using coded patterns of sniffing. This system was then linked up to an electric wheelchair, giving individuals complete control. For example, two inhaling sniffs move it forward, while two exhaling ones move it into reverse.

This so-called sniff-controller provides paralysed individuals with something able-bodied people take for granted - independence. It allows them to move, to write and to surf the internet, and even drive an electric wheelchair. Nonetheless, the SNIFFCONTROL project still faces a number of obstacles.

While the innovation is a proven success in terms of its functionality, no company has yet licensed the technology. "We are in the frustrating position of having a cheap and simple solution that has not yet been made readily available," says Sobel.

The potential applications are there. The sniff-controller has already dramatically improved the lives of the small number of individuals who participated in SNIFFCONTROL's studies. Furthermore, able-bodied individuals could also use the sniff-controller to manipulate a computer with similar speed and accuracy as that obtained using a mouse or joystick.

"Developing a device that helps the severely disabled is incredibly rewarding," says Sobel. "The moment a paralysed woman used our device to communicate with her children for the first time in seven months since the onset of her paralysis was the best moment of my career."

Explore further: Sniff, sniff. What did you say? New form of animal communication discovered

More information: SNIFFCONTROL

Related Stories

Sniff, sniff. What did you say? New form of animal communication discovered

March 7, 2013
When animals like dogs or rats sniff one another, there might be more going on than you'd think. Research reported in Current Biology, a Cell Press publication, on March 7th finds in rats that those sniffing behaviors communicate ...

Understanding how we use the past to predict the future

August 20, 2013
Recent research has offered strong evidence that the brain, when it is confronted with a specific stimulus, uses 'predictive coding' to create a mental expectation about what is going to happen next.

Lesson in sleep learning: Associations formed in brains of sleeping volunteers remained intact when subjects were awake

August 26, 2012
Is sleep learning possible? A new Weizmann Institute study appearing today in Nature Neuroscience has found that if certain odors are presented after tones during sleep, people will start sniffing when they hear the tones ...

Recommended for you

Best of Last Year—The top Medical Xpress articles of 2017

December 20, 2017
It was a good year for medical research as a team at the German center for Neurodegenerative Diseases, Magdeburg, found that dancing can reverse the signs of aging in the brain. Any exercise helps, the team found, but dancing ...

Pickled in 'cognac', Chopin's heart gives up its secrets

November 26, 2017
The heart of Frederic Chopin, among the world's most cherished musical virtuosos, may finally have given up the cause of his untimely death.

Sugar industry withheld evidence of sucrose's health effects nearly 50 years ago

November 21, 2017
A U.S. sugar industry trade group appears to have pulled the plug on a study that was producing animal evidence linking sucrose to disease nearly 50 years ago, researchers argue in a paper publishing on November 21 in the ...

Female researchers pay more attention to sex and gender in medicine

November 7, 2017
When women participate in a medical research paper, that research is more likely to take into account the differences between the way men and women react to diseases and treatments, according to a new study by Stanford researchers.

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.