Prion-like proteins drive several diseases of aging

September 5, 2013

Two leading neurology researchers have proposed a theory that could unify scientists' thinking about several neurodegenerative diseases and suggest therapeutic strategies to combat them.

The theory and backing for it are described in Nature.

Mathias Jucker and Lary Walker outline the emerging concept that many of the associated with aging, such as Alzheimer's and Parkinson's, are caused by specific proteins that misfold and aggregate into harmful seeds.

These seeds behave very much like the pathogenic agents known as prions, which cause , in deer, scrapie in sheep, and Creutzfeldt-Jakob disease in humans.

Walker is research professor at Yerkes National Primate Research Center, Emory University. Jucker is head of the Department of Cellular Neurology at the Hertie Institute for Clinical Brain Research at the University of Tübingen and the German Center for Neurodegenerative Diseases.

Unlike prion diseases, which can be infectious, Alzheimer's, Parkinson's, and other can not be passed from person to person under normal circumstances. Once all of these diseases take hold in the brain, however, it is increasingly apparent that the clumps of misfolded proteins spread throughout the nervous system and disrupt its function.

The authors were the first to show that a protein that is involved in Alzheimer's disease—known as amyloid-beta—forms prion-like seeds that stimulate the aggregation of other amyloid-beta molecules in and in . Since then, a growing number of laboratories worldwide have discovered that proteins linked to other neurodegenerative disorders also share key features with prions.

Age-related neurodegenerative disorders remain stubbornly resistant to the discovery of effective treatments. Jucker and Walker propose that the concept of pathogenic protein seeding not only could focus research strategies for these seemingly unrelated diseases, but it also suggests that therapeutic approaches designed to thwart prion-like seeds early in the disease process could eventually delay or even prevent the diseases.

Explore further: Receptor may aid spread of Alzheimer's and Parkinson's in brain

More information: dx.doi.org/10.1038/nature12481

Related Stories

Receptor may aid spread of Alzheimer's and Parkinson's in brain

August 23, 2013
(Medical Xpress)—Scientists at Washington University School of Medicine in St. Louis have found a way that corrupted, disease-causing proteins spread in the brain, potentially contributing to Alzheimer's disease, Parkinson's ...

New models advance the study of deadly human prion diseases

August 19, 2013
By directly manipulating a portion of the prion protein-coding gene, Whitehead Institute researchers have created mouse models of two neurodegenerative diseases that are fatal in humans. The highly accurate reproduction of ...

Brain inflammation likely key initiator to prion and Parkinson's disease

November 29, 2012
In a recent publication, researchers of the Computational Biology group at the Luxembourg Centre for Systems Biomedicine showed that neuro-inflammation plays a crucial role in initiating prion disease.

Designer compounds inhibit prion infection

July 20, 2012
(Medical Xpress) -- A team of University of Alberta researchers has identified a new class of compounds that inhibit the spread of malfunctioning proteins in the brain that cause lethal neurodegenerative diseases in humans ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.