New bacteria found in human gut

October 2, 2013 by Krishna Ramanujan, Cornell University

(Medical Xpress)—Call it kin to blue-green algae. Cornell and University of California, Berkeley, researchers have identified a new bacteria found in groundwater and in mammalian guts – including those in humans.

The newly discovered Melainabacteria may play a role in digesting fiber; it is more abundant in herbivorous mammals and in people with plant-rich diets. The microbes also appear to add value to diets by synthesizing vitamins B and K for their hosts, according to research published in the journal eLife (Oct. 1). The scientists have sequenced the new 's genome and they describe the microbe's appearance and function based on genetic clues.

The human immune system recognizes specific sequences in the flagella of commensal and symbiotic bacteria, including Melainabacteria, offering evidence that the bugs are common gut residents.

Melainabacteria are close relatives of billion-year-old Cyanobacteria – often called blue-green algae – ancient photosynthesizing microbes that helped raise atmospheric oxygen in prehistoric eras, and likely led to early plant cells.

Only about a quarter of all bacteria can be cultured in the lab, so researchers look for a signature gene sequence – called 16S rRNA – to identify new types of bacteria. The human gut contains between 10 trillion and 100 trillion bacterial cells, and most of those fall into five different phyla, or lineages.

"We started picking up sequences [for Melainabacteria], but when we put them in context with other bacteria, they were on the branch of Cyanobacteria," said Ruth Ley, assistant professor of microbiology and a senior author of the study. Sara Di Rienzi, a postdoctoral researcher in Ley's lab, is co-lead author.

Melainabacteria belong on a common lineage with Cyanobacteria, but they diverged and do not photosynthesize, Ley said.

When scientists used computer programs to analyze genetic sequences of gut samples, the computers classified Melainabacteria as Cyanobacteria. But then researchers began asking, why are they in the gut? Some researchers proposed they were remnants of food. Others found similar in mud samples. None had been cultured in the laboratory, so their roles were unknown.

In the study, the researchers used a new technique for stitching bacterial genomes together from aquifer groundwater and human stool samples. "This new technology allows you to assemble genomes from complex bits that you previously couldn't have assembled," said Ley.

Di Rienzi and colleagues picked four samples, three human stools and one from an aquifer, where the new bacteria accounted for up to 4 percent of the community of microbes. Using the new technique, they pieced together eight genomes, one of them from the aquifer sample. The genomes also confirm that the gut and environmental Melainabacteria belong in separate subphyla.

The researchers also believe that Melainabacteria facilitate fermentation in the , probably to break down plant fibers, which produces hydrogen gas as a byproduct. But when hydrogen accumulates, it stops the fermentation process. The new bug is likely to rely on a partner microbe that processes hydrogen, Ley said. And because of this reliance, it cannot be obtained in "pure culture" in the laboratory, which is why so little was known about it.

The study offers an example of where new genomic technologies, human health and evolutionary microbiology all come together, Di Rienza said. "Melainabacteria is a poster child for the field" of microbiology, she added.

Itai Sharon, a postdoctoral researcher, is also a co-lead author of the study, and Jillian Banfield, a professor of geomicrobiology, is the paper's other corresponding author, both at the University of California, Berkeley.

Explore further: 'Unhealthy' changes in gut microbes benefit pregnant women

More information: "The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria," eLife, 2013.

Related Stories

'Unhealthy' changes in gut microbes benefit pregnant women

August 2, 2012
The composition of microbes in the gut changes dramatically during pregnancy, according to a study published by Cell Press in the August 3rd issue of the journal Cell. Although these changes are associated with metabolic ...

Breast is best: Good bacteria arrive from mum's gut via breast milk

August 21, 2013
Scientists have discovered that important 'good' bacteria arrive in babies' digestive systems from their mother's gut via breast milk.

Genetic makeup and diet interact with the microbiome to impact health

September 25, 2013
A Mayo Clinic researcher, along with his collaborators, has shown that an individual's genomic makeup and diet interact to determine which microbes exist and how they act in the host intestine. The study was modeled in germ-free ...

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.