Facebook and Twitter may yield clues to preventing the spread of disease

October 3, 2013, University of Waterloo

Facebook and Twitter could provide vital clues to control infectious diseases by using mathematical models to understand how we respond socially to biological contagions.

Cold and flu season prompts society to find ways to prevent the spread of disease though measures like vaccination all the way through to covering our mouths when we cough and staying in bed. These social responses are much more difficult to predict than the way biological contagion will evolve, but new methods are being developed to do just that.

Published this week in Science, Chris Bauch, a Professor of Applied Mathematics at the University of Waterloo, and co-author Alison Galvani from Yale University, review social factors in epidemiology. They suggest that the biological spread of diseases is intertwined with how society responds to those contagions.

"Social media and other data sources can be tapped for insights into how people will react when faced with a new disease control measure or the threat of infectious disease," said Professor Bauch. "We can create models from this data that allows researchers to observe how social contagion networks interact with better-known biological contagion networks."

Researchers found that—like disease—ideas, sentiments and information can also be contagious. They looked at examples such as pediatric vaccine coverage, public health communications aimed at reducing the spread of infection and acceptance of quarantine during the SARS outbreak.

"Predictive modelling isn't perfect, but it can help gauge how people will respond to measures," said Professor Bauch, who works with epidemiologists and population health researchers. "All sorts of variables can effect something as complex as the spread of disease. This is why it's important to bring a variety of perspectives into play, not just the biological considerations."

Bauch will continue to study the intersection of theory and data in order to build better predictive models. Understanding how networks and biological contagion networks interact with one another can help officials prepare to save lives in the case of future disease outbreaks.

Explore further: Controlling contagion by restricting mobility

More information: "Social Factors in Epidemiology," by C.T. Bauch, Science, DOI: 10.1126/science.1244492

Related Stories

Controlling contagion by restricting mobility

July 30, 2013
In an epidemic or a bioterrorist attack, the response of government officials could range from a drastic restriction of mobility—imposed isolation or total lockdown of a city—to moderate travel restrictions in some areas ...

Public opinion lights the fire for politicians to adopt anti-smoking bans

January 26, 2012
(Medical Xpress) -- Citizens aren't just blowing smoke when it comes to anti-tobacco legislation—and they tend to copy what neighboring states do, new research shows.

Scientists turn data into disease detective to predict dengue fever and malaria outbreaks

September 30, 2013
Scientists from IBM are collaborating with Johns Hopkins University and University of California, San Francisco to combat illness and infectious diseases in real-time with smarter data tools for public health. The focus is ...

Recommended for you

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Flu may be spread just by breathing, new study shows; coughing and sneezing not required

January 18, 2018
It is easier to spread the influenza virus (flu) than previously thought, according to a new University of Maryland-led study released today. People commonly believe that they can catch the flu by exposure to droplets from ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.