Research shows genetic anti-inflammatory defect predisposes children to lymphoma

October 2, 2013, American Society of Hematology

New research shows that children with an inherited genetic defect in a critical anti-inflammatory pathway have a genetic predisposition to lymphoma. Results of the study, published online today in Blood, the Journal of the American Society of Hematology (ASH), reveal an important association between the genetic defect, which causes chronic intestinal inflammation and early onset inflammatory bowel disease, and its role in cancer development in infants and children.

Among the hundreds of signaling pathways in the human immune system that guide the body's defense against infection, inflammation, and trauma, the interleukin-10 (IL-10) pathway plays a substantial role in regulating and safeguarding the intestinal tract. In rare cases, a can appear in the IL-10 or in one of its receptors (IL-10R1 and IL-10R2) that turns off the pathway's normal protective function, resulting in the development of very-early-onset inflammatory bowel diseases (VEO-IBD) in children as young as two weeks old.

While chronic intestinal inflammation is a known risk factor for , until this study no formal connection had been made between IL-10 deficiency, VEO-IBD, and the development of certain malignancies. Researchers began to investigate this potential linkage when five children between 5.5 and 6.5 years of age being monitored for VEO-IBD at the Necker Children's Hospital in Paris and the Munich Children's Hospital developed highly proliferative and severe cancer very similar to diffuse large B-cell lymphoma (DLBCL), an extremely rare form of blood cancer in children.

"When one VEO-IBD patient with an IL-10R deficiency developed diffuse large B-cell lymphoma, we suspected it might be an unfortunate circumstance. However, when the second, third, fourth, and fifth child were diagnosed, it was clear that this was not a chance occurrence," said lead study author Alain Fischer, MD, PhD, of the Imagine Institute, French National Institute of Health and Medical Research and Assistance Publique – Hôpitaux de Paris in Paris.

To explore the subset and type of the children's lymphomas, investigators performed several analyses to characterize their molecular composition, identify chromosomal abnormalities, and examine their genetic expression profiles. Following these analyses, the research team observed that all five children exhibited sub-types of DLBCL so extraordinarily similar that the similarity could not be atrributed to random occurrence, but rather reflected consequences of the defective IL-10 pathway.

In confirming their discovery, researchers considered that the predisposition to lymphoma in the five children with IL-10 deficiency could have been related to the immunosuppressive therapy that four of them received for VEO-IBD. However, of the 53 children being monitored at the Necker Children's Hospital and the Munich Children's Hospital for VEO-IBD who received the same therapy, the children with IL-10 deficiency were the only ones who developed lymphoma.

While this finding confirms an association between a nonfunctioning IL-10 pathway and lymphoma, the mechanism by which this genetic deficiency activates has not yet been identified. One hypothesis considers the IL-10 pathway's role in regulating the proliferation of B cells in the body and proposes that an IL-10 deficiency may lead to uncontrolled cell activity and ultimately cancer. Another potential explanation contends that IL-10 deficiency may impair the disease-fighting ability of local T cells, a type of white blood cell.

Given the established protective effects of the IL-10 pathway and the elevated risk of lymphoma observed in these IL-10-deficient children, these findings may lead researchers to develop a more complete understanding of how the IL-10 pathway may be manipulated to aid in cancer prevention.

"The confirmed association between the IL-10 pathway and this rare pediatric lymphoma provides a valuable tool to predict cancer risk in with VEO-IBD so that doctors can take preventive action that may prevent the occurrence or reoccurrence of ," said Dr. Fischer.

Explore further: Protein explains increased asthma severity in children exposed to diesel exhaust from traffic

Related Stories

Protein explains increased asthma severity in children exposed to diesel exhaust from traffic

September 23, 2013
A new study shows that exposure to diesel exhaust particles from traffic pollution leads to increased asthma severity in children. Moreover, the study finds that this is due to increased blood levels of IL-17A, a protein ...

Children with behavioral problems more at risk of inflammation

September 5, 2013
Children with behavioral problems may be at risk of many chronic diseases in adulthood including heart disease, obesity, diabetes, as well as inflammatory illnesses (conditions which are caused by cell damage).

Novel cytokine protects mice from colitis

August 23, 2011
Inflammatory bowel disease (IBD), which affects more than 1 million patients in North America, results from an uncontrolled immune response triggered by environmental factors, such as bacteria, in people genetically predisposed ...

Recommended for you

Genomics reveals key macrophages' involvement in systemic sclerosis

January 18, 2018
A new international study has made an important discovery about the key role of macrophages, a type of immune cell, in systemic sclerosis (SSc), a chronic autoimmune disease which currently has no cure.

First vaccine developed against grass pollen allergy

January 18, 2018
Around 400 million people worldwide suffer in some form or other from a grass pollen allergy (rhinitis), with the usual symptoms of runny nose, cough and severe breathing problems. In collaboration with the Viennese firm ...

Researchers discover key driver of atopic dermatitis

January 17, 2018
Severe eczema, also known as atopic dermatitis, is a chronic inflammatory skin condition that is driven by an allergic reaction. In their latest study, researchers at La Jolla Institute reveal an important player that promotes ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

Researchers identify new way to unmask melanoma cells to the immune system

January 16, 2018
system, which enables these deadly skin cancers to grow and spread.

How the immune system's key organ regenerates itself

January 15, 2018
With advances in cancer immunotherapy splashing across headlines, the immune system's powerful cancer assassins—T cells—have become dinner-table conversation. But hiding in plain sight behind that "T" is the organ from ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.