A genetic variation that could protect skin from sun damage fuels testicular cancer

October 10, 2013
One of the most important proteins implicated in cancer is p53, which binds to DNA to regulate the activity of a large number of genes. In a study published by Cell Press October 10th in the journal Cell, researchers have identified a DNA sequence variation in a p53-binding site that is more prevalent in Caucasians than in Africans and is associated with a very large risk of testicular cancer but may protect light-skinned individuals against harmful ultraviolet rays. The study offers novel insights into the evolution of DNA sequence variations in p53-binding sites, and it could also lead to improvements in personalized treatment strategies. Credit: Cell, Zeron-Medina et al

A Ludwig Cancer Research study published in Cell today identifies a common mutation that dramatically increases the risk for testicular cancer—and describes a likely molecular mechanism by which it exerts that effect. The researchers also suggest why, despite its potential lethality, the genetic variation has been favored by natural selection to become common in light-skinned people. It appears this mutation might aid the tanning of Caucasian skin in response to sunlight, protecting it from UV radiation, which can burn and cause cancer.

"Knowing the inherited genetics of has great potential in medicine," says co-author Gareth Bond who is a Ludwig researcher at Oxford University. "It can aid the development of tests to predict the risk of developing particular malignancies. It can also tell physicians about the likely prognosis of cancers, and inform therapeutic choices, improving management of the disease."

The DNA sequence of the human genome is peppered with tiny variations that help account for many of the differences between people, from the color of their eyes to the curliness of their hair to their risk of obesity. These mutations, known as single nucleotide polymorphisms (SNPs)—because they change only one base, or "letter", in the sequence—are also associated with risk for a wide variety of diseases, not least cancers. But in most cases, it is unclear how any particular SNP contributes to the risk for developing its associated illness.

The SNP discovered by Bond and co-author Douglas Bell of the US National Institute of Environmental Health Sciences affects the activity of a protein named p53, which is best known as the cell's most important defense mechanism against cancer. In response to various stimuli, p53 binds to a specific pattern of DNA sequences—known as response elements—to turn on a dizzying array of genes that drive everything from embryonic development to the induced suicide of potentially cancerous cells. The team analyzed databases containing 62,567 SNPs associated with cancer, looking for mutations that alter p53's ability to turn on its target genes. They report the detection of one that boosts p53's association with a key response element and show that this particular SNP is very tightly linked to the risk of developing .

The SNP resides in a p53 response element that activates the production of a protein named KIT ligand (KITLG). The study shows that KITLG activation by p53 can fuel the proliferation of cells. Experiments also suggest that the SNP significantly boosts p53's ability to regulate KITLG in a variety of cells. "It appears," Bell explains, "that this particular variant permits testicular stem cells to grow in the presence of DNA damage, when they are supposed to stop growing, since such damage can lead to cancer."

An evolutionary genomic analysis conducted by the team reveals that inherited SNPs that alter p53's ability to bind its response elements have been ruthlessly eliminated by . Yet their analysis also reveals that their identified SNP (named KITLG p53 RE SNP, rs4590952) has not only slipped through the selective, negative filters of evolution, but has been positively selected in the Caucasian gene pool.

To explain why this SNP might have been positively selected and escaped negative selection, the authors draw from their own and other studies of the skin's response to sunlight. Though UV light can burn and cause cancer, it is also important to human health, necessary for the production of the essential nutrient vitamin D, among other things. To balance the benefits of sunlight against its inherent dangers, the body makes the pigment melanin. The detection of UV damage activates p53 in certain cells of the skin, fueling the secretion of KITLG and prompting pigment-making called melanocytes to multiply and ramp up melanin production. The result: a protective tan.

Bell, Bond and their team confirm in their experiments that p53 drives KITLG production and melanocyte proliferation in mice exposed to high levels of UV light. Their genomic analysis shows, notably, that the version of the KITLG p53 response element that responds better to p53 is found in the genomes of 79% of Caucasian Europeans, but only 24% of Africans—who have a four to five-fold lower risk for testicular cancer than do Caucasians.

"Over the course of evolution, as humans migrated out of Africa into the dimly lit terrain of the north, they developed lighter skin, most likely to adapt to the lower levels of sunlight," explains Bond. "Unfortunately, that adaptation also left their skin susceptible to UV damage. It is intriguing to speculate that the better version of the KITLG response element is evolution's compensation for that vulnerability. But it appears to come at a cost—which is a greater risk for testicular cancer."

Explore further: Wip1 could be new target for cancer treatment

More information: Cell, Zeron-Medina et al.: "A Polymorphic p53 Response Element in KIT Ligand Influences Cancer Risk and Has Undergone Natural Selection." dx.doi.org/10.1016/j.cell.2013.09.017

Related Stories

Wip1 could be new target for cancer treatment

May 6, 2013
Researchers have uncovered mutations in the phosphatase Wip1 that enable cancer cells to foil the tumor suppressor p53, according to a study in The Journal of Cell Biology. The results could provide a new target for the treatment ...

Research reveals cancer-suppressing protein 'multitasks'

May 9, 2013
The understanding of how a powerful protein called p53 protects against cancer development has been upended by a discovery by Walter and Eliza Hall Institute researchers.

Sunscreen saves superhero gene

October 8, 2013
(Medical Xpress)—Next time your kids complain about putting on sunscreen, tell them this: Sunscreen shields a superhero gene that protects them from getting cancer.

Deficiency in p53 anti-tumor protein delays DNA repair after radiation

April 23, 2013
Researchers at Moffitt Cancer Center have found that a deficiency in an important anti-tumor protein, p53, can slow or delay DNA repair after radiation treatment. They suggest that this is because p53 regulates the expression ...

Scientists find promising way to boost body's immune surveillance via p53

September 18, 2013
Researchers at A*STAR's Singapore Immunology Network (SIgN) have discovered a new mechanism involving p53, the famous tumour suppressor, to fight against aggressive cancers. This strategy works by sabotaging the ability of ...

Three is the magic number: A chain reaction required to prevent tumor formation

January 20, 2012
Protein p53 is known for controlling the life and death of a cell and has a key role in cancer research. P53 is known to be inactive in 50 percent of cancer patients. If researchers succeed in re-establishing the presence ...

Recommended for you

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.