New imaging technique can identify breast cancer subtypes and early treatment response

October 15, 2013

An optical imaging technique that measures metabolic activity in cancer cells can accurately differentiate breast cancer subtypes, and it can detect responses to treatment as early as two days after therapy administration, according to a study published in Cancer Research, a journal of the American Association for Cancer Research.

"The process of targeted drug development requires assays that measure drug target engagement and predict the response (or lack thereof) to treatment," said Alex Walsh, a graduate student in the Department of Biomedical Engineering at Vanderbilt University in Nashville, Tenn. "We have shown that optical metabolic imaging (OMI) enables fast, sensitive, and accurate measurement of drug action. Importantly, OMI measurements can be made repeatedly over time in a live animal, which significantly reduces the cost of these preclinical studies."

Human cells undergo extensive chemical reactions called metabolic activity to produce energy, and this activity is altered in . When cancer cells are treated with anticancer drugs, their changes. OMI takes advantage of the fact that two molecules involved in cellular metabolism, called nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), naturally emit fluorescence when exposed to certain forms of light. In this way, OMI generates distinct signatures for cells with a different metabolism and their responses to drugs.

Walsh and colleagues used a custom-built, multiphoton microscope and coupled it with a titanium-sapphire laser that causes NADH and FAD to emit fluorescence. They used specific filters to isolate the fluorescence emitted by these two molecules, and measured the ratio of the two as "redox ratio."

When they placed normal and cancerous under the microscope, OMI generated distinct signals for the two types of cells. OMI could also differentiate between estrogen receptor-positive, estrogen receptor-negative, HER2-positive, and HER2-negative .

Next, the researchers tested the effect of the anti-HER2 antibody trastuzumab on three cell lines that respond differently to the antibody. They found that the redox ratios were significantly reduced in drug-sensitive cells after trastuzumab treatment but unaffected in the resistant cells.

They then grew human breast tumors in mice and treated some of these with trastuzumab. When they imaged tumors in live mice, OMI showed a difference in response between trastuzumab-sensitive and -resistant tumors as early as two days after the first dose of the antibody. In comparison, FDG-PET imaging, the standard clinical metabolic imaging technique, could not measure any difference in response between trastuzumab-sensitive and -resistant tumors at any time point in the experiment, which lasted 12 days.

"Cancer drugs have profound effects on cellular energy production, and this can be harnessed by OMI to identify responding cells from nonresponding cells," said Walsh. "We are hoping to develop a high-throughput screening method to predict the optimal drug treatment for a particular patient."

Importantly, OMI can be used on tissues freshly excised from patients but, with further development, it could be incorporated in endoscopes for live imaging of human cancers, according to the investigators.

Explore further: Treatment targeting PI3K may delay resistance to anti-HER2 therapy in breast cancer patients

Related Stories

Treatment targeting PI3K may delay resistance to anti-HER2 therapy in breast cancer patients

January 23, 2013
Patients with HER2-positive breast cancer being treated with anti-HER2 therapy may be able to prevent or delay resistance to the therapy with the addition of a phosphatidylinositol-3 kinase inhibitor to their treatment regimens.

Triple-negative breast cancer target for drug development identified

October 3, 2013
Often deadly "triple-negative" breast cancers might be effectively treated in many cases with a drug that targets a previously unknown vulnerability in the tumors, according to a UC San Francisco researcher who described ...

Enhancing the effectiveness of a breast cancer treatment

February 13, 2012
Breast cancers expressing the protein HER2 have a particularly poor prognosis. Treatment with trastuzumab (Herceptin) benefits some patients with HER2-positive breast cancer, but it is not as effective as had been hoped. ...

Osteoporosis drug stops growth of breast cancer cells, even in resistant tumors

June 15, 2013
A drug approved in Europe to treat osteoporosis has now been shown to stop the growth of breast cancer cells, even in cancers that have become resistant to current targeted therapies, according to a Duke Cancer Institute ...

Enhanced luminal breast tumor response to antiestrogen therapy

September 3, 2013
Breast cancer can be divided into 4 major subtypes using molecular and genetic information from the tumors. Each subtype is associated with different prognosis and should be taken into consideration when making treatment ...

Recommended for you

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.