Maintenance mechanism that prevents stem cells aging discovered

October 10, 2013, Asociacion RUVID

A team of researchers at the Molecular Neurobiology Unit of the University of Valencia, led by Professor of Cell Biology Isabel Fariñas, just published in the journal Nature Neuroscience, the results of a research that may shed light on the maintenance of stem cells in the adult brain, and their activity to produce new neurons throughout life.

The group has discovered that the Cdkn1a/p21 gene is essential for maintaining the active and functional. Its absence causes depletion of these cells, impairing their functioning and affecting the generation of new neurons, as it occurs at the end of our lives.

Stem cells need p21 to replicate themselves in a controlled manner. As p21 is a and regulates the proliferation of neural stem cells, it might be thought that its inactivation would lead to brain tumors. However, p21 functions differently in neural stem cells. Its absence does not cause tumors but depletion of neural stem cells, ie aging. "The reason, Isabel Fariñas says, is that p21 exerts functions in these cells that are independent of its classical action on the cell cycle and this is one of the novel aspects of the research."

Isabel Fariñas' team, in collaboration with the group of Anxo Vidal (University of Santiago de Compostela), demonstrated that p21 in restrains the production of molecules that induce the depletion of these cells, which occurs during aging . "The research allows us to understand better how get lost in our brains as we age, and opens the possibility to try to alleviate this deterioration," Isabel Fariñas says.

Fariñas' team belongs to the Molecular Neurobiology Unit of the Department of Cell Biology and Parasitology and to the ERI of Biotechnology and Biomedicine of the Universityto the Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) and to the RETIC for Cell Therapy and it is Prometeu group of excellence.

Explore further: Stem cells help repair traumatic brain injury by building a 'biobridge'

More information: Porlan, E. et al. Transcriptional repression of Bmp2 by cell cycle inhibitor p21 links quiescence to neural stem cell maintenance in the subependymal niche, Nature Neuroscience (2013). DOI: 10.1038/nn.3545

Related Stories

Stem cells help repair traumatic brain injury by building a 'biobridge'

October 3, 2013
University of South Florida researchers have suggested a new view of how stem cells may help repair the brain following trauma. In a series of preclinical experiments, they report that transplanted cells appear to build a ...

Tracking nanodiamond-tagged stem cells

August 5, 2013
A method that is used to track the fate of a single stem cell within mouse lung tissue is reported in a study published online this week in Nature Nanotechnology. The method may offer insights into the factors that determine ...

Protein involved in nerve-cell migration implicated in spread of brain cancer

August 7, 2013
The invasion of brain-tumor cells into surrounding tissue requires the same protein molecule that neurons need to migrate into position as they differentiate and mature, according to new research from the University of Illinois ...

Lipid metabolism regulates the activity of adult neural stem cells

December 4, 2012
(Medical Xpress)—Neural stem cells in the adult brain boost their levels of lipid metabolism to grow and generate new neurons. This new finding may open novel therapeutic avenues to treat age- or disease-associated loss ...

Scientists identify key regulator controlling formation of blood-forming stem cells

September 26, 2013
Stem cell scientists have moved one step closer to producing blood-forming stem cells in a Petri dish by identifying a key regulator controlling their formation in the early embryo, shows research published online today in ...

Recommended for you

Even without nudging blood pressure up, high-salt diet hobbles the brain

January 16, 2018
A high-salt diet may spell trouble for the brain—and for mental performance—even if it doesn't push blood pressure into dangerous territory, new research has found.

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

Preterm babies may suffer setbacks in auditory brain development, speech

January 15, 2018
Preterm babies born early in the third trimester of pregnancy are likely to experience delays in the development of the auditory cortex, a brain region essential to hearing and understanding sound, a new study reveals. Such ...

BOLD view of white matter

January 15, 2018
The brain consists of gray matter, which contains the nerve cell bodies (neurons), and white matter, bundles of long nerve fibers (axons) that until recently were considered passive transmitters of signals between different ...

Does an exploding brain network cause chronic pain?

January 12, 2018
A new study finds that patients with fibromyalgia have brain networks primed for rapid, global responses to minor changes. This abnormal hypersensitivity, called explosive synchronization (ES), can be seen in other network ...

An innovative PET tracer can measure damage from multiple sclerosis in mouse models

January 12, 2018
The loss or damage of myelin, a cellular sheath that surrounds and insulates nerves, is the hallmark of the immune-mediated neurological disorder multiple sclerosis (MS). When segments of this protective membrane are damaged, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.