Mechanisms of wound healing are clarified in zebrafish study

October 29, 2013
Mechanisms of wound healing are clarified in MBL zebrafish study
These are zebrafish (Danio rerio). Credit: Lukas Roth

A crucial component of wound healing in many animals, including humans, is the migration of nearby skin cells toward the center of the wound. These cells fill the wound in and help prevent infection while new skin cells regenerate.

How do these neighboring skin cells know which way to migrate? What directional cues are they receiving from the wound site? A new paper by Mark Messerli and David Graham of the MBL's Eugene Bell Center for Regenerative Biology and Tissue Engineering clarifies the role of signaling in this medically significant communication between skin cells.

Messerli and Graham conducted the study using zebrafish skin cells, which migrate much faster than . "Fish have to heal quickly," Messerli says. "They are surrounded by microbes and fungi in the water. They are constantly losing scales, which generates a wound. So the wound has to be healed in the epidermis first and then a new scale has to be built. Fish skin cells (keratinocytes) migrate five times faster at room temperature than mammalian cells do at 37 degrees C. So it is very easy to track and follow their migratory paths in a short period of time. "

The study brought fresh insights on the role of in inducing cellular organization and directed migration of skin cells. "When we started this study, we were looking at calcium signaling at the single-cell level, which is how it has been looked at for decades. How do single cells see injury?" Messerli says.

This is skin of an adult zebrafish. The distinctive labyrinth-like patterns seen on most of the cells are actin micro-ridges that are characteristic of superficial skin cells. SEM image. Credit: David Graham / Marine Biological Laboratory, Woods Hole

To their surprise, by the end of the study they were looking at the calcium signals not just in single cells but in sheets of cells that surround . "The periphery of the wound itself appears to form a graded calcium signal that could direct migration and growth toward the center of the wound. This is what we are looking at now," Messerli says.

The team's approach was to use advanced microscopy to monitor cellular calcium signals and molecular analysis to identify membrane proteins that caused increases in cellular calcium migration. A variety of mechanically activated ion channels were identified in migratory . TRPV1, the ion channel that is also activated by hot peppers, was found to be necessary for .

Explore further: Important wound-healing process discovered

More information: Graham DM, Huang L, Robinson KR, and Messerli MA (2013) Epidermal keratinocyte polarity and motility require Ca2+ influx through TRPV1. J Cell Sci. 126: 4602-4613.

Related Stories

Important wound-healing process discovered

September 26, 2013
Scientists at The Scripps Research Institute (TSRI) have discovered an important process by which special immune cells in the skin help heal wounds. They found that these skin-resident immune cells function as "first responders" ...

Too much of a good thing? Too many 'healing' cells delays wound healing

July 1, 2013
Like most other things, you can have too much of a good thing when it comes to wound healing, and new research proves it. According to an article published in the July 2013 issue of the Journal of Leukocyte Biology, wound ...

Scientists find calcium is the initial trigger in our immune response to healing

February 14, 2013
For the first time scientists studying the cellular processes underlying the body's response to healing have revealed how a flash of calcium is the very first step in repairing damaged tissue. The findings, published in Current ...

Gene and stem cell therapy combination could aid wound healing

October 9, 2013
Johns Hopkins researchers, working with elderly mice, have determined that combining gene therapy with an extra boost of the same stem cells the body already uses to repair itself leads to faster healing of burns and greater ...

Scientists discover 'switch' critical to wound healing

March 8, 2013
Patients with diseases such as diabetes suffer from painful wounds that take a long time to heal, making them more susceptible to infections that could even lead to amputations. A*STAR's discovery paves the way for therapeutics ...

Growth factor responsible for triggering hair follicle generation during wound healing identified

June 2, 2013
Researchers in the Perelman School of Medicine at the University of Pennsylvania have determined the role of a key growth factor, found in skin cells of limited quantities in humans, which helps hair follicles form and regenerate ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.