Scientists identify molecular signals that rouse dormant HIV infection

October 30, 2013, Gladstone Institutes

Perhaps the single greatest barrier to curbing the spread of HIV/AIDS is the dormant, or "latent," reservoir of virus, which is out of reach of even the most potent medications. But now, scientists at the Gladstone Institutes have uncovered new clues that may help researchers awaken HIV from its slumber—laying the foundation for purging all trace of the virus, and for one day finding a cure for the more than 34 million people worldwide living with HIV/AIDS.

In a paper being published today in PLOS One, researchers in the laboratory of Gladstone Investigator Warner C. Greene, MD, PhD, have uncovered the molecular signals that guide the activation of latent HIV. Specifically, they showed how molecular crosstalk between calcium and an enzyme called calcineurin, along with a molecule called prostratin, switch on members of the NF-κB family of proteins—thereby activating latent HIV. These findings point to a new strategy of artificially activating HIV—a process that experts believe is key to flushing out all evidence of infection and developing a cure for HIV/AIDS.

During the initial stages of HIV infection, often within hours, the virus infects a type of white blood cell called CD4 T cells. In the majority of cases, HIV then hijacks the cell's DNA to produce, or "transcribe," new virus, infecting more cells. But every so often something different happens: the viral DNA inserts itself into the host cell's DNA, but then stops, maintaining a holding pattern that can persist for decades. This latent HIV is virtually undetectable and therefore cannot be targeted by medication.

"Current treatments, which involve a complex cocktail of antiretroviral (ARV) medications, are fine-tuned to target and destroy active, replicating HIV—but they can't touch the latent virus," explained Dr. Greene, director of virology and immunology research at Gladstone and professor of medicine at the University of California, San Francisco, with which Gladstone is affiliated. "But most troublingly is that within weeks of stopping ARV treatment, the latent virus wakes up, and the cycle of replication and infection begins all over again."

What this means for patients is a lifetime of treatment with expensive ARVs. This is an unsustainable strategy in today's world, where more than two-thirds of those infected live in the developing world and have limited access to ARVs. And for every 10 people who do receive ARVs, 16 become newly infected.

Recently, researchers have championed the "shock-and-kill" strategy for combating HIV latency. This approach would activate the latent virus, and then bombard this newly active virus with ARVs. Precisely how to do so has been fraught with difficulty. But in this study, Dr. Greene and his team have identified a potential strategy.

In laboratory experiments using latent HIV introduced into CD4 cells from donors or cell culture, the research team tested a series of proteins believed to regulate activation and transcription of the virus. One such family of proteins, called NFAT, was previously shown to induce HIV transcription during the initial stages of infection. So the researchers tested whether it would also function in activating latent HIV.

"Surprisingly, NFAT didn't appear to play a central role so we went back to the drawing board, exploring other protein families we thought might be involved," said Gladstone Postdoctoral Fellow Jonathan Chan, PhD, the paper's lead author. "Interestingly, we observed that members of the NF-κB protein family appeared to act as a molecular alarm clock, rousing latent HIV and spurring viral replication."

Even more interesting was what they observed when they added prostratin to the mix. Prostratin, a naturally occurring compound that is extracted from the Samoan mamala tree, helps to activate latent HIV. But prostratin is difficult to procure and, as of right now, impossible to synthesize on an industrial scale. Now, the experiments performed by Drs. Greene and Chan suggest a potential workaround.

"When we stimulated the calcium/calcineurin pathway in the presence of low levels of prostratin, we in turn boosted prostratin's effectiveness," explained Dr. Chan. "These findings, while preliminary, hold promise that we could develop a way to purge the latent HIV reservoir with even suboptimal levels of prostratin."

"Our results give us much-needed insight how the shock-and-kill approach to eliminate the virus might work," said Dr. Greene. "Slowly but surely we are finding new components of a cure cocktail that might be able—at long last—to realize a broadly applicable and scaleable cure for HIV/AIDS."

Explore further: Cancer drug shows promise in eradicating latent HIV infection

Related Stories

Cancer drug shows promise in eradicating latent HIV infection

November 29, 2012
Breakthrough drugs have made it possible for people to live with HIV longer than ever before, but more work must be done to actually cure the disease. One of the challenges researchers face involves fully eradicating the ...

New target to fight HIV infection identified

October 1, 2013
A mutant of an immune cell protein called ADAP (adhesion and degranulation-promoting adaptor protein) is able to block infection by HIV-1 (human immunodeficiency virus 1), new University of Cambridge research reveals. The ...

Scientists develop technique to decipher the dormant AIDS virus concealed in cells

September 11, 2012
Scientists at the Gladstone Institutes have gotten us one step closer to understanding and overcoming one of the least-understood mechanisms of HIV infection—by devising a method to precisely track the life cycle of individual ...

Vaccination strategy may hold key to ridding HIV infection from immune system

March 8, 2012
Using human immune system cells in the lab, AIDS experts at Johns Hopkins have figured out a way to kill off latent forms of HIV that hide in infected T cells long after antiretroviral therapy has successfully stalled viral ...

Reservoir of hidden HIV larger than previously thought

October 24, 2013
In the fight to cure human immunodeficiency virus (HIV), researchers have been dealt a blow. A new study by Howard Hughes Medical Institute (HHMI) scientists discovered that the pool of inactive HIV viruses that lingers silently ...

Researchers report cats may be the key to human HIV vaccine

October 2, 2013
(Medical Xpress)—Blood from HIV-infected human subjects shows an immune response against a cat AIDS virus protein, a surprise finding that could help scientists find a way to develop a human AIDS vaccine, report University ...

Recommended for you

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

Researchers find clues to AIDS resistance in sooty mangabey genome

January 3, 2018
Peaceful co-existence, rather than war: that's how sooty mangabeys, a monkey species found in West Africa, handle infection by SIV, a relative of HIV, and avoid developing AIDS-like disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.