Scientists discover new role for cell dark matter in genome integrity

October 3, 2013, University of Montreal

University of Montreal researchers have discovered how telomerase, a molecule essential for cancer development, is directed to structures on our genome called telomeres in order to maintain its integrity and in turn, the integrity of the genome. In an article published in the journal Molecular Cell, the scientists explain how they discovered that telomerase molecules are rallied together by a molecule called TERRA, a so-called "non-coding RNA" having no known function in the cell. The scientists used cutting edge microscopy techniques to visualize and track the telomerase molecules as they were ferried to telomeres by TERRA. "Non-coding RNAs constitute the "dark matter of the genome", as they are abundant but their function is largely unknown", explained Dr. Pascal Chartrand, senior investigator and professor of biochemistry.

Each time a cell divides, chromosomes, the long DNA molecules that encode our genes, must be duplicated. But the machinery that does this replication is imperfect, failing to perform duplication all the way to the ends of chromosomes. How living cells divide and how this process is accurately achieved are among the deepest questions scientists have been addressing for decades. It is also where this process goes wrong that aging occurs and cancers arise," Chartrand explained. "To protect the ends of our chromosomes, nature has evolved a simple workaround. Pieces of extra DNA called telomeres are sliced to the ends of the chromosomes and each time they divide, the replication machinery reads into the telomeres, assuring that all our genes remain intact. The telomeres get shorter, but a molecule called then splices a new piece of DNA to the shortened telomeres to bring them back to their original length. Telomerase is inactive in most of our cells, so repeated division of shortens them to the point that cells no longer divide and eventually die. The opposite happens in cancer cells, where telomerase stays active and cells become immortal."

The gene for the non-coding RNA molecule TERRA is found in telomeres and it was suspected to play a role in telomere integrity. To figure out what TERRA might be doing to preserve , Dr. Chartrand's collaborators, lead author Emilio Cusanelli and Carmina Angelica Perez Romero, attached a fluorescent probe molecule to TERRA so that they could track what TERRA was doing in the cell under a microscope. They discovered that the production of TERRA is turned on when the telomere that its gene sits on gets shorter. They then found that TERRA molecules accumulated in a single spot and at the same time recruited telomerase molecules, which are subsequently directed to the short telomere from which TERRA originated.

This discovery reveals a whole other layer of regulation of telomerase activity, and a novel role for a non-coding RNA in the maintenance of the genome. TERRA could be a new target as well for anti-cancer therapeutic discovery.

Explore further: Scientists capture single cancer molecules at work

More information: "Telomeric Noncoding RNA TERRA Is Induced by Telomere Shortening to Nucleate Telomerase Molecules at Short Telomeres" Molecular Cell, 2013.

Related Stories

Scientists capture single cancer molecules at work

December 8, 2011
Researchers have revealed how a molecule called telomerase contributes to the control of the integrity of our genetic code, and when it is involved in the deregulation of the code, its important role in the development of ...

Protein 'motif' crucial to telomerase activity

September 19, 2013
It is difficult to underestimate the importance of telomerase, an enzyme that is the hallmark of both aging and the uncontrolled cell division associated with cancer. In an effort to understand and control telomerase activity, ...

Research reveals how cancer-driving enzyme works

May 6, 2011
Cancer researchers at UT Southwestern Medical Center are helping unlock the cellular-level function of the telomerase enzyme, which is linked to the disease's growth.

Researchers successfully map fountain of youth

March 27, 2013
In collaboration with an international research team, University of Copenhagen researchers have for the first time mapped telomerase, an enzyme which has a kind of rejuvenating effect on normal cell ageing. The findings have ...

Telomere length influences cancer cell differentiation

June 27, 2013
Researchers from the Japanese Foundation for Cancer Research in Tokyo have discovered that forced elongation of telomeres (extensions on the end of chromosomes) promotes the differentiation of cancer cells, probably reducing ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.