Study points to possible treatment for brain disorders

October 22, 2013
Green fluorescent protein (green) labeled cells in the mouse brain are assayed for mTOR activity using phospho-S6 immunostaining (red). Credit: Nathaniel Hartman

Clemson University scientists are working to determine how neurons are generated, which is vital to providing treatment for neurological disorders like Tuberous Sclerosis Complex (TSC).

TSC is a that causes the growth of tumors in the and other vital organs and may indicate such as autism, epilepsy and cognitive impairment that may arise from the abnormal generation of .

"Current medicine is directed at inhibiting the mammalian target of rapamycin (mTOR), a common feature within these tumors that have abnormally high activity," said David M Feliciano, assistant professor of biological sciences. "However, current treatments have severe side effects, likely due to mTOR's many functions and playing an important role in cell survival, growth and migration."

Feliciano and colleagues published their findings in journal Cell Reports.

"Neural generate the primary communicating cells of the brain called neurons through the process of neurogenesis, yet how this is orchestrated is unknown," said Feliciano.

The stem cells lie at the core of brain development and repair, and alterations in the cells' self-renewal and differentiation can have major consequences for brain function at any stage of life, according to researchers.

To better understand the process of neurogenesis, the researchers used a genetic approach known as neonatal electroporation to deliver pieces of DNA into neural stem cells in young mice, which allowed them to express and control specific components of the mTOR pathway.

The researchers found that when they increase activity of the mTOR pathway, make neurons at the expense of making more stem cells. They also found that this phenomenon is linked to a specific mTOR target known as 4E-BP2, which regulates the production of proteins.

Ultimately, this study points to a possible new treatment, 4E-BP2, for neurodevelopmental disorders like TSC and may have fewer side effects.

Future experiments are aimed at identifying which proteins are synthesized due to this pathway in neurological disorders.

Explore further: Researchers have found new role for mTOR in autism-related disorders

Related Stories

Researchers have found new role for mTOR in autism-related disorders

June 3, 2013
(Medical Xpress)—Researchers have found a novel role for a protein that has been implicated in an autism-related disorder known as tuberous sclerosis complex (TSC).

Maintenance mechanism that prevents stem cells aging discovered

October 10, 2013
A team of researchers at the Molecular Neurobiology Unit of the University of Valencia, led by Professor of Cell Biology Isabel Fariñas, just published in the journal Nature Neuroscience, the results of a research that may ...

Astrocytes control the generation of new neurons from neural stem cells

August 24, 2012
Astrocytes are cells that have many functions in the central nervous system, such as the control of neuronal synapses, blood flow, or the brain's response to neurotrauma or stroke.

Advance in tuberous sclerosis brain science

May 9, 2013
Doctors often diagnose tuberous sclerosis complex (TSC) based on the abnormal growths the genetic disease causes in organs around the body. Those overt anatomical structures, however, belie the microscopic and mysterious ...

Scientists show biological mechanism can trigger epileptic seizures

September 19, 2012
Scientists have discovered the first direct evidence that a biological mechanism long suspected in epilepsy is capable of triggering the brain seizures – opening the door for studies to seek improved treatments or even ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.