New study decodes brain's process for decision making

November 8, 2013

(Medical Xpress)—When faced with a choice, the brain retrieves specific traces of memories, rather than a generalized overview of past experiences, from its mental Rolodex, according to new brain-imaging research from The University of Texas at Austin.

Led by Michael Mack, a postdoctoral researcher in the departments of psychology and neuroscience, the study is the first to combine computer simulations with brain-imaging data to compare two different types of decision-making models.

In one model—exemplar—a decision is framed around concrete traces of memories, while in the other model—prototype—the decision is based on a generalized overview of all memories lumped into a specific category.

Whether one model drives decisions more than the other has remained a matter of debate among scientists for more than three decades. But according to the findings, the exemplar model is more consistent with decision-making behavior.

The study was published this month in Current Biology. The authors include Alison Preston, associate professor in the Department of Psychology and the Center for Learning and Memory; and Bradley Love, a professor at University College London.

In the study, 20 respondents were asked to sort various shapes into two categories. During the task their brain activity was observed using (fMRI), allowing researchers to see how the respondents associate shapes with past memories.

According to the findings, behavioral research alone cannot determine whether a subject uses the exemplar or to make decisions. With brain-imaging analysis, researchers found that the exemplar model accounted for the majority of participants' decisions. The results show three different regions associated with the exemplar model were activated during the learning task: occipital (visual perception), parietal (sensory) and frontal cortex (attention).

While processing new information, the brain stores concrete traces of experiences, allowing it to make different kinds of decisions, such as categorization information (is that a dog?), identification (is that John's dog?) and recall (when did I last see John's dog?).

To illustrate, Mack says: Imagine having a conversation with a friend about buying a new car. When you think of the category "car," you're likely to think of an abstract concept of a car, but not specific details. However, abstract categories are composed of memories from individual experiences. So when you imagine "car," the abstract mental picture is actually derived from experiences, such as your friend's white sedan or the red sports car you saw on the morning commute.

"We flexibly memorize our experiences, and this allows us to use these memories for different kinds of decisions," Mack says. "By storing concrete traces of our experiences, we can make decisions about different types of cars and even specific past in our life with the same memories."

Mack says this new approach to model-based cognitive neuroscience could lead to discoveries in cognitive research.

"The field has struggled with linking theories of how we behave and act to the activation measures we see in the brain," Mack says. "Our work offers a method to move beyond simply looking at blobs of brain activation. Instead, we use patterns of brain activation to decode the algorithms underlying cognitive behaviors like decision making."

Explore further: Memories serve as tools for learning and decision-making, new study shows

More information: www.cell.com/current-biology/a … -9822%2813%2901041-5

Related Stories

Memories serve as tools for learning and decision-making, new study shows

July 12, 2012
(Medical Xpress) -- When humans learn, their brains relate new information with past experiences to derive new knowledge, according to psychology research from The University of Texas at Austin.

Study reveals brain connections for introspection

October 16, 2013
(Medical Xpress)—The human mind is not only capable of cognition and registering experiences but also of being introspectively aware of these processes. Until now, scientists have not known if such introspection was a single ...

Researchers visualize memory formation for the first time in zebrafish

May 16, 2013
In our interaction with our environment we constantly refer to past experiences stored as memories to guide behavioral decisions. But how memories are formed, stored and then retrieved to assist decision-making remains a ...

Rats recall past to make daily decisions

May 3, 2012
(Medical Xpress) -- UCSF scientists have identified patterns of brain activity in the rat brain that play a role in the formation and recall of memories and decision-making. The discovery, which builds on the team's previous ...

Neuroimaging study sheds light on mechanisms of cognitive fatigue in MS

November 1, 2013
A new study by Kessler Foundation scientists sheds light on the mechanisms underlying cognitive fatigue in individuals with multiple sclerosis. Cognitive fatigue is fatigue resulting from mental work rather than from physical ...

Brain mapping reveals neurological basis of decision-making in rats

March 20, 2013
Scientists at UC San Francisco have discovered how memory recall is linked to decision-making in rats, showing that measurable activity in one part of the brain occurs when rats in a maze are playing out memories that help ...

Recommended for you

How a seahorse-shaped brain structure may help us recognize others

December 8, 2017
How do we recognize others? How do we know friend from foe, threat from reward? How does the brain compute the multitude of cues telling us that Susan is not Erica even though they look alike? The complexity of social interactions—human ...

Brain networks that help babies learn to walk ID'd

December 8, 2017
Scientists have identified brain networks involved in a baby's learning to walk—a discovery that eventually may help predict whether infants are at risk for autism.

Why we can't always stop what we've started

December 7, 2017
When we try to stop a body movement at the last second, perhaps to keep ourselves from stepping on what we just realized was ice, we can't always do it—and Johns Hopkins University neuroscientists have figured out why.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

How we learn: Mastering the features around you rather than learning about individual objects

December 7, 2017
A Dartmouth-led study on how we learn finds that humans tend to rely on learning about the features of an object, rather than on the individual object itself.

Researchers launch atlas of developing human brain

December 7, 2017
The human brain has been called the most complex object in the cosmos, with 86 billion intricately interconnected neurons and an equivalent number of supportive glial cells. One of science's greatest mysteries is how an organ ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.