Researchers describe a new function of two molecules involved in metastasis

November 14, 2013

Researchers from IMIM (Hospital del Mar Medical Research Institute) lead by Dr. Sandra Peiró have described a new function for two key molecules involved in tumor progression. Transcription factor SNAIL1 and enzyme LOXL2 are essential to Epithelial-Mesenchymal Transition (EMT); meaning the process by which tumor cells are able to move and reach other tissues. The study has been published in the Molecular Cell Journal and places enzyme LOXL2 as a possible therapeutic target to treat cancers such as breast, lung or skin cancer.

Transcription factors are proteins that regulate gene expression. They activate or deactivate a gene's function. Researchers at IMIM have studied the function of one of these , Snail1, in mouse cells during the Epithelial-Mesenchymal Transition (EMT). Sandra Peiró, a researcher from the IMIM Research Group on Epithelial-Mesenchymal Transition and Tumor Progression explains: "EMT is a process consisting of converting epithelial cells, the ones covering the internal and external surfaces of the body, into what are known as . In this process, the cells acquire a series of new characteristics that enable them to migrate and resist apoptosis (programmed cell death), self-regenerate and, finally, invade neighboring tissues and reach other areas of the body. When this process occurs at the tumor epithelial cells, the resulting mesenchymal cells can migrate and generate metastases".

The study shows that during the transformation into mesenchymal , DNA, folded in to chromatin cell, must then become reorganized to adapt to the now cell functions. Transcription factors Snail1, through LOXL2 is in charge of this transformation. Therefore, any mechanism that is able to block it would prevent Epithelial-Mesenchymal Transition and thus a metastasis. "Our research is basic, and therefore, our findings cannot be applied immediately, but the fact that LOXL2 is a key element in the process and an enzyme makes it a firm candidate to be a , since its activity can easily be inhibited or blocked with the right drugs", says Sandra Peiró.

Previous studies by this group had described, for the first time, that LOXL2 was present at the cell nucleus and played a key role in tumor development. These new outcomes show that the functions of the genome are found to go far beyond the simple DNA sequence and that, therefore, it is necessary to integrate all levels of regulation to understand genome regulation. Right now, the challenge for the researchers is to study how the genome is organized spatially during a vital process in the development of cancer as EMT.

Explore further: Why tumor cells go on dangerous tours

More information: "Regulation of Heterochromatin Transcription By Snail1/ LOXL2 During Epithelial to Mesenchymal Transition". Alba Millanes-Romero, Nicolás Herranz, Valentina Perrera, Ane Iturbide, Jordina Loubat, Jesús Gil, Thomas Jenuwein, Antonio García de Herreros, and Sandra Peiró. Molecular Cell.

Related Stories

Why tumor cells go on dangerous tours

November 4, 2013
Tumors become highly malignant when they acquire the ability to colonize other tissues and form metastases. Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have identified a factor that promotes metastasis ...

Transition in cell type parallels treatment response, disease progression in breast cancer

January 31, 2013
A process that normally occurs in developing embryos – the changing of one basic cell type into another – has also been suspected of playing a role in cancer metastasis. Now a study from Massachusetts General Hospital ...

Tracking the cell transitions that cause cancer

March 6, 2013
Researchers think that for cancer to develop, damaged cells have to undergo certain transitions that cause them to spread, or metastasize. Junior Tristan Bepler, a biology and computer science major, is testing this hypothesis, ...

Researchers discover master regulator in cancer metastasis

June 10, 2013
In the process of metastasis, the movement of cancer cells to different parts of the body, a specific master regulator gene plays a central role: a transcription factor named Sox4 activates a sequence of genes and triggers ...

New advances in the understanding of cancer progression

April 12, 2012
Researchers at the Hospital de Mar Research Institute (IMIM) have discovered that the protein LOXL2 has a function within the cell nucleus thus far unknown. They have also described a new chemical reaction of this protein ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.