Intestinal bacteria influence food transit through the gut

November 21, 2013, University of Gothenburg

Food transit through the small intestine affects the body's absorption of nutrients and, consequently, our health. The discovery that food transit time is regulated by a hormone indicates new ways to increase the intestinal absorption of nutrients, and thus potentially treat malnutrition.

One of the tasks of the is to break down from our diet to provide a usable energy source in the colon.

Researchers at the Sahlgrenska Academy, University of Gothenburg, have now shown that lack of energy in the colon leads to increased release of a hormone primarily associated with and , GLP-1.

Importantly, they also showed that the released GLP-1 regulates how quickly food passes through the small intestine. These findings may open up new possibilities to treat malnutrition and malnutrition-related diseases.

"Food transit through the small intestine is a complex balancing act, in which the gut lining must be given time to absorb nutrients but without allowing pathogenic bacteria sufficient time to colonize the small intestine. We have discovered that food transit through the is regulated by a specific hormone called GLP-1, which is linked to our glucose metabolism and appetite," says Anita Wichmann, postdoctoral researcher at the Sahlgrenska Academy and the study's lead author.

The study, published in the prestigious journal Cell Host & Microbe, was led by Professor Fredrik Bäckhed, who heads an internationally recognized research group that investigates the links between the gut microbiota and regulation of the body's metabolism.

"We are continuously discovering new functions that are regulated by the gut microbiota, which highlight its incredibly important function for health and development of diseases," he says.

Explore further: New discoveries linking gut bacteria with cholesterol metabolism give hope for the future

More information: "Microbial Modulation of Energy Availability in the Colon Regulates Intestinal Transit." Anita Wichmann, Ava Allahyar, Thomas U. Greiner, Hubert Plovier, Gunnel Östergren Lundén, Thomas Larsson, Daniel J. Drucker, Nathalie M. Delzenne, Patrice D. Cani, Fredrik Bäckhed. Cell Host & Microbe - 13 November 2013 (Vol. 14, Issue 5, pp. 582-590) DOI: 10.1016/j.chom.2013.09.012

Related Stories

New discoveries linking gut bacteria with cholesterol metabolism give hope for the future

February 18, 2013
(Medical Xpress)—Researchers at the Sahlgrenska Academy, University of Gothenburg, Sweden, show that cholesterol metabolism is regulated by bacteria in the small intestine. These findings may be important for the development ...

The body's bacteria affect intestinal blood vessel formation

March 26, 2012
Researchers at the Sahlgrenska Academy at the University of Gothenburg, Sweden, have discovered a previously unknown mechanism which helps intestinal bacteria to affect the formation of blood vessels. The results, which are ...

Gastric bypass surgery alters gut microbiota profile along the intestine

July 10, 2012
Research to be presented at the Annual Meeting of the Society for the Study of Ingestive Behavior (SSIB), the foremost society for research into all aspects of eating and drinking behavior, finds that gastric bypass surgery ...

Gut hormone test predicts individual efficacy of gastric bypass

November 8, 2013
The sensitivity of the GLP-1 hormone, which is secreted by the gastrointestinal tract, can predict the metabolic efficacy of a gastric bypass. The use of a GLP1 challenge could thus function as a novel predictive biomarker ...

Gut microbiota regulates bile acid metabolism

April 19, 2012
A new study presented today at the International Liver Congress 2012 demonstrates that the gut microbiota has a profound systemic effect on bile acid metabolism.

Microbial restoration of the inflamed gut

September 30, 2013
A team led by gastroenterologists Sieglinde Angelberger and Walter Reinisch (Medical University Vienna) and microbiologists David Berry and Alexander Loy (University of Vienna) explored how a treatment called "fecal microbiota ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.