A new model for organ repair: Kidney repair may not require stem cells

November 1, 2013

Harvard Stem Cell Institute (HSCI) researchers have a new model for how the kidney repairs itself, a model that adds to a growing body of evidence that mature cells are far more plastic than had previously been imagined.

After , mature dedifferentiate into more primordial versions of themselves, and then differentiate into the cell types needing replacement in the damaged tissue. This finding conflicts with a previously held theory that the kidney has scattered stem cell populations that respond to injury. The research appears online in PNAS Early Edition.

HSCI Kidney Diseases Program Leader Benjamin Humphreys, MD, PhD, a Harvard Medical School assistant professor at Brigham and Women's Hospital, was suspicious of the kidney stem cell repair model because his previous work suggested that all have the capacity to divide after injury. He and his colleagues decided to test conventional wisdom by genetically tagging mature kidney cells in mice that do not express stem cell markers; the hypothesis being that the mature cells should do nothing or die after injury. The results showed that not only do these fully differentiated cells multiply, but they can multiply several times as they help to repair the kidney.

"What was really interesting is when we looked at the appearance and expression patterns of these , we found that they expressed the exact same 'stem cell markers' that these other groups claimed to find in their stem cell populations," said Humphreys. "And so, if a differentiated cell is able to express a 'stem cell marker' after injury, then what our work shows is that that's an injury marker—it doesn't define a stem cell."

This new interpretation of kidney repair suggests a model by which cells reprogram themselves; similar to the way can be chemically manipulated to revert to an induced pluripotent state. The research echoes a study published last month by HSCI Principal Faculty member David Breault, MD, PhD, who showed that cells in the adrenal glands also regenerate by means of natural lineage conversion.

"One has to remember that not every organ necessarily is endowed with clear and well-defined stem , like the intestines or the skin," Humphreys explained. "I'm not saying that kidney don't exist, but in tissues where cell division is very slow during homeostasis, there may not have been an evolutionary pressure for stem cell mechanisms of repair."

He plans to apply his kidney repair discovery to define new therapeutic targets in acute kidney injury. The goal would be to find drugs that accelerate the process of dedifferentiation and proliferation of mature kidney cells in response to injury, as well as slow down pathways that impair healing or lead to scar tissue formation.

Explore further: Stem cell scarring aids recovery from spinal cord injury

More information: Differentiated kidney epithelial cells repair injured proximal tubes. PNAS Early Edition. October 2013

Related Stories

Stem cell scarring aids recovery from spinal cord injury

October 31, 2013
In a new study, researchers at Karolinska Institutet in Sweden show that the scar tissue formed by stem cells after a spinal cord injury does not impair recovery; in fact, stem cell scarring confines the damage. The findings, ...

Researchers looking at new way to treat chronic kidney disease and heart failure

October 16, 2013
Researchers at St. Michael's Hospital are using adult bone marrow stem cells as they investigate a completely new way of treating chronic kidney disease and heart failure in rats.

Stem cell transplant repairs damaged gut in mouse model of inflammatory bowel disease

October 17, 2013
A source of gut stem cells that can repair a type of inflammatory bowel disease when transplanted into mice has been identified by researchers at the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute at ...

Tracking nanodiamond-tagged stem cells

August 5, 2013
A method that is used to track the fate of a single stem cell within mouse lung tissue is reported in a study published online this week in Nature Nanotechnology. The method may offer insights into the factors that determine ...

Research findings point to new therapeutic approach for common cause of kidney failure

September 5, 2013
New research has uncovered a process that is defective in patients with autosomal dominant polycystic kidney disease, a common cause of kidney failure. The findings, which appear in an upcoming issue of the Journal of the ...

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.