Methylation linked to metabolic disease

November 11, 2013
Annotation of Functional Epigenetic Variation in Regulatory Elements: Bar plot showing the proportion of all methylation sites

(Medical Xpress)—In the first in-depth analysis of DNA methylation in fat, a process that affects the regulation of genes, researchers have linked regions of methylation to metabolic traits such as high body mass index (BMI) and obesity.

Charting DNA methylation is vital to understanding associated with disease. These chemical tags form part of the epigenome: the chemical and structural changes to DNA that affect the function of a person's genome. The team examined the genomes of fat cells taken from twins and found that DNA methylation patterns are very likely to be passed down from parents to their children.

Twin studies can help to tease out to what extent variation in DNA methylation is genetic and how much is due to environmental factors encountered in a lifetime. For twins that are genetically identical from birth, differences in disease development are likely to be due to environmental influences.

DNA methylation is an epigenetic change but is often under genetic control. The most common form of DNA methylation involves the addition of a molecule, known as a methyl group, to the DNA base cysteine. This process is vital to the regulation of many cellular processes such as embryonic development, transcription, and chromatin structure. Consistent with these important roles, a growing number of human diseases have been associated with aberrant DNA methylation.

"We are exploring epigenetic variation in people, trying to understand the interplay between and DNA methylation and how they impact disease," says Professor Panos Deloukas, from the Wellcome Trust Sanger Institute and Queen Mary University London. "Our research has uncovered many links between methylation and genetic regions in fat tissue associated with metabolic diseases."

The team surveyed more than 450,000 sites on the genome from fat tissue samples from 648 twins, the largest twin study of its kind. They found that, in apparently healthy people, there is little variation in methylation patterns. Variability is suppressed in regions that are important for gene regulation such as promoters.

When the team integrated and DNA methylation they found 28% of sites to be under genetic control. Overlapping this information with the variants known to regulate gene expression showed that only 6 per cent of these variants regulated both gene expression and DNA methylation.

The team integrated the information about DNA methylation with other genetic data from the NIH RoadMap Epigenomics Mapping Consortium, and all known regions in the genome associated with common disease. They found many of the variants that regulate DNA methylation overlap with metabolic-trait or disease loci in regulatory elements known as gene enhancers. The strongest effects were seen for high-density lipoprotein cholesterol and BMI.

"We know that DNA methylation plays a role in gene regulation and disease susceptibility," says Elin Grundberg, lead author from the Wellcome Trust Sanger Institute and McGill University, Montreal, Canada. "Through our research we are beginning to unravel the frequency, location and function of DNA methylation variation."

This study provides functional information for genetic regions associated with metabolic disease. The team did further analysis on a variant known to be associated with increased BMI, close to the ADCY3 gene. They found that this variant also regulates DNA methylation in the same region.

This study has greatly enhanced the understanding of the link between methylation and disease in specific cell types. The next step for the team is to explore further the effects of methylation on other tissue types such as blood and skin cells and start mapping shared versus cell-restricted sites of DNA methylation.

Explore further: DNA changes during pregnancy persist into childhood

More information: "Global Analysis of DNA Methylation Variation in Adipose Tissue from Twins Reveals Links to Disease-Associated Variants in Distal Regulatory Elements," Elin Grundberg, Eshwar Meduri, Johanna K. Sandling, sa K. Hedman, Sarah Keildson, Alfonso Buil, Stephan Busche, Wei Yuan, James Nisbet, Magdalena Sekowska, Alicja Wilk, Amy Barrett, Kerrin S. Small, Bing Ge, Maxime Caron, So-Youn Shin, the Multiple Tissue Human Expression Resource Consortium, Mark Lathrop, Emmanouil T. Dermitzakis, Mark I. McCarthy, Timothy D. Spector2 Jordana T. Bell, and Panos Deloukas. American Journal of Human Genetics 2013, DOI: 10.1016/j.ajhg.2013.10.004

Related Stories

DNA changes during pregnancy persist into childhood

September 4, 2013
Even before they are born, babies accumulate changes in their DNA through a process called DNA methylation that may interfere with gene expression, and in turn, their health as they grow up. But until now it's been unclear ...

Deciphering the cellular reading system of DNA methylation

April 12, 2013
(Medical Xpress)—Scientists from the FMI identify how a family of proteins reads the methylation marks on the DNA so critical for cell development. These MBD proteins bind directly to methylation marks and inactivate the ...

New insights into why humans are more susceptible to cancer and other diseases

August 23, 2012
Chimpanzees rarely get cancer, or a variety of other diseases that commonly arise in humans, but their genomic DNA sequence is nearly identical to ours. So, what's their secret? Researchers reporting in the September issue ...

Lifestyle influences metabolism via DNA methylation

September 20, 2013
An unhealthy lifestyle leaves traces in the DNA. These may have specific effects on metabolism, causing organ damage or disease. Scientists of Helmholtz Zentrum München have now identified 28 DNA alterations associated with ...

Experts find epigenetic changes moderate reality distortion in schizophrenia patients

June 10, 2013
A study in Schizophrenia Bulletin is among the first to indicate epigenetic changes related to immune function in schizophrenia. DNA methylation, a process involving the addition of a methyl group to the DNA without changing ...

Recommended for you

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Evolved masculine and feminine behaviors can be inherited from social environment

August 15, 2017
The different ways men and women behave, passed down from generation to generation, can be inherited from our social environment - not just from genes, experts have suggested.

Attitudes on human genome editing vary, but all agree conversation is necessary

August 10, 2017
In early August 2017, an international team of scientists announced they had successfully edited the DNA of human embryos. As people process the political, moral and regulatory issues of the technology—which nudges us closer ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.