Tackling a large challenge for new modes of drug delivery

November 12, 2013 by Marie Daniels
Tackling a large challenge for new modes of drug delivery
Cancer cell.

New treatments for prostate cancer, multiple sclerosis and cystic fibrosis could be developed following research being carried out into how medicinal 'biologics' can be delivered to diseased cells.

Currently only 15 per cent of protein targets in human can be 'targeted therapeutically', rendering the remaining 85 per cent of proteins out of reach of traditional small drug treatments.

Dr Ishwar Singh, from the School of Pharmacy, University of Lincoln, UK, is now looking to develop a platform technology for tumour-specific delivery of biologics – large molecule drugs based on , proteins and peptides with a potent and highly therapeutic effect.

He said: "Large molecule drugs are just that – too big to pass through to the . The challenge is to find a way to deliver these large molecules to the cells. Cell penetrating peptides (CPPs) are known to facilitate the delivery of therapeutic biologics into target cells. Unfortunately current CPPs are highly toxic, which has prevented their widespread use. The aim of our project is to develop a non-toxic drug delivery method which enables CPPs to selectively pass through cell membranes of cancer cells, delivering the drug to the target site without causing toxicity.

"In the long-term we will be able to use this approach to treat conditions such as Multiple Sclerosis, and even some forms of cancer that are currently resistant to available drugs. We are developing a platform technology which could then be applied to a range of conditions."

Biologics differ from small drug molecules not only in terms of size, but also in how they are made, how they behave, their mode of action in the body and their suitability for certain drug forms.

Small, chemically manufactured molecules are the classic active substances and still make up more than 90 per cent of drugs on the market today. However, therapeutics based on large molecules, such as antibodies, are becoming increasingly important.

Small molecules can be processed into easily ingestible tablets or capsules. When the tablet dissolves in the gastrointestinal tract, the dissolved active substance is absorbed into the bloodstream via the intestinal wall. Small drugs can then reach the site of action in the body because of their tiny size. Their small structure and chemical composition also helps them to penetrate cell membranes.

Large , which are created by biological or synthetic processes, are made up of proteins, nucleic acids, sugars or a complex combination of these substances, or may be living entities such as cells. Delivery of these therapeutics to target sites is therefore a more complex process.

Dr Singh has been awarded a Royal Society Research Grant which will facilitate his research with colleague Dr Driton Vllasaliu for the next year.

Explore further: Cholesterol rafts deliver drugs inside cancer cells

Related Stories

Cholesterol rafts deliver drugs inside cancer cells

April 2, 2013
DNA, siRNA and miRNA can reprogram cancer cells – that is, if these nucleic acids could cross through the cell membrane. A University of Colorado Cancer Center study published today in the journal Therapeutic Delivery shows ...

Potential brain tumour drug can distinguish cancer cells from healthy ones

October 31, 2013
A potential new drug, already in clinical development, can stop brain tumour cells growing while leaving healthy cells alone, according to new research published today (Wednesday) in PLOS ONE.

Recommended for you

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.