Study finds axon regeneration after Schwann cell graft to injured spinal cord

December 23, 2013

A study carried out at the University of Miami Miller School of Medicine for "The Miami Project to Cure Paralysis" has found that transplanting self-donated Schwann cells (SCs, the principal ensheathing cells of the nervous system) that are elongated so as to bridge scar tissue in the injured spinal cord, aids hind limb functional recovery in rats modeled with spinal cord injury.

The study will be published in a future issue of Cell Transplantation but is currently freely available online as an unedited early e-pub.

"Injury to the results in scar and cavity formation at the lesion site," explains study corresponding author Dr. Mary Bartlett Bunge of the University of Miami Miller School of Medicine. "Although numerous strategies have been developed to nullify the lesion environment, scar tissue - in basil lamina sheets - wall off the lesion to prevent further injury and, also, at the interface, impedes axon regeneration into and out of the grafts, limiting functional recovery."

The researchers determined that the properties of a spinal cord/Schwann cell bridge interface enable regenerated and elongated brainstem axons to cross the bridge and potentially lead to an improvement in hind limb movement of rats with spinal cord injury.

Electron microscopy revealed that axons, SCs, and astrocytes were enclosed together within tunnels bounded by continuous basal lamina. The expression of neuroglycan (NG2; a proteoglycan found on the membrane of cells) was associated with these tunnels. They subsequently determined that a "trio" of astrocyte processes, SCs and regenerating axons were "bundled" together within the tunnels of basal lamina.

"Elongation of astrocyte processes across transplant interfaces likely establishes three-dimensional structures that determine how regenerating axons become exposed to myriad growth-promoting and inhibitory cues," wrote the researchers. The researchers also noted that it was important to understand conditions that favor astrocytes to be permissive for axonal growth into lesion transplants.

"We demonstrated that the elongation of astrocyte processes into SC transplants, and the formation of NG2+ tunnels, enables brainstem axon regeneration and improvement in function," they concluded. "This study supports the clinical use of SCs for SCI repair and defines important characteristics of permissive spinal cord/graft interfaces."

"Developing the means to bridge the glial scar following chronic spinal cord injury is one of the major stumbling blocks of therapy" said Dr. John Sladek, Cell Transplantation section editor and professor of neurology and pediatrics at the University of Colorado School of Medicine. "This study provides important new insight into how this may be achieved".

Explore further: Stem cell scarring aids recovery from spinal cord injury

More information: Williams, R. R.; Henao, M.; Pearse, D. D.; Bunge, M. B. Permissive Schwann Cell Graft/Spinal Cord Interfaces For Axon Regeneration. Cell Transplant. Appeared or available online: October 22, 2013.

Related Stories

Stem cell scarring aids recovery from spinal cord injury

October 31, 2013
In a new study, researchers at Karolinska Institutet in Sweden show that the scar tissue formed by stem cells after a spinal cord injury does not impair recovery; in fact, stem cell scarring confines the damage. The findings, ...

Co-transplanted cells and treadmill training aids rats with spinal cord injury

November 25, 2013
After Schwann cells (SCs), the principal cells in the peripheral nervous system, and olfactory ensheathing cells (OECs), cells that ensheath the non-myelinated peripheral neurons in the nose, were co-transplanted into laboratory ...

Optimal site for cell transplantation to treat spinal cord injury investigated

November 21, 2013
After laboratory mice received a contusive spinal cord injury at the T10 level, low and high doses of neural stem/progenitor cells (NS/PCs) derived from fetal bioluminescent-labeled transgenic mice were injected into four ...

Technique to promote nerve regeneration after spinal cord injury restores bladder function in rats

June 25, 2013
Using a novel technique to promote the regeneration of nerve cells across the site of severe spinal cord injury, researchers have restored bladder function in paralyzed adult rats, according to a study in the June 26 issue ...

Fish study raises hope for spinal injury repair

May 30, 2012
(Medical Xpress) -- Scientists have unlocked the secrets of the zebra fish’s ability to heal its spinal cord after injury, in research that could deliver therapy for paraplegics and quadriplegics in the future.

Neural stem cell transplants for spinal cord injury maximized by combined, complimentary therapies

April 17, 2012
Combined, complimentary therapies have the ability to maximize the benefits of neural stem cell (NSC) transplantation for spinal cord repair in rat models, according to a study carried out by a team of Korean researchers ...

Recommended for you

Study finds walnuts may promote health by changing gut bacteria

July 28, 2017
Research led by Lauri Byerley, PhD, RD, Research Associate Professor of Physiology at LSU Health New Orleans School of Medicine, has found that walnuts in the diet change the makeup of bacteria in the gut, which suggests ...

Green tea ingredient may ameliorate memory impairment, brain insulin resistance, and obesity

July 28, 2017
A study published online in The FASEB Journal, involving mice, suggests that EGCG (epigallocatechin-3-gallate), the most abundant catechin and biologically active component in green tea, could alleviate high-fat and high-fructose ...

Manipulating a type of brain cell gets weight loss results in mice

July 28, 2017
A new study has found something remarkable: the activation of a particular type of immune cell in the brain can, on its own, lead to obesity in mice. This striking result provides the strongest demonstration yet that brain ...

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.