New hope for patients with macular degeneration

December 13, 2013
New hope for patients with macular degeneration
Associate Professor Damien Harkin with a silk scaffold that would be used to grow new cells to repair damaged eyes.

Macular degeneration is a leading cause of blindness in Australia, affecting one in seven people over the age of 50.

The impact of this disease that impairs the central field of vision is profound but thanks to research being conducted by QUT scientists and students a new treatment for is under development.

Associate Professor Damien Harkin of the School of Biomedical Sciences at QUT has spent the last seven years developing innovative ways to repair the eye in collaboration with scientists and clinicians at the Queensland Eye Institute (QEI).

A novel aspect of this work has been to explore the use of proteins found in silk as materials on which to grow and transplant new eye tissue.

Having successfully applied this concept to corneal stem cells, Professor Harkin and his QEI-based team have now turned their attention to the challenge of treating diseases of the retina and in particular macular degeneration.

"The ultimate goal of our research is to develop an effective, affordable and accessible treatment for patients afflicted with ," Professor Harkin said.

"The use of stem cells in conjunction with is just one of many good ideas worth investigating."

Supported by The Macular Diseases Foundation of Australia (MDFA), Professor Harkin and his team were recently awarded a prestigious grant to explore the potential of silk proteins as materials for repairing the retina.

QUT students past and present have played a vital role in Professor Harkin's important research including Dr Laura Bray who was awarded the inaugural Prime Minister's Queen Elizabeth II Diamond Jubilee Award in 2012 to continue her studies of corneal tissue engineering using silk proteins in Dresden, Germany.

More recently, the group's studies of the retina have been driven by the efforts of Ms Audra Shadforth, who is exploring the use of silk proteins as a scaffold for retinal pigment epithelial (RPE) cells.

"RPE cells are responsible for maintaining the survival and function of the retinal cells that are required to sense light (rods and cones)," Ms Shadforth said.

"As the retina ages, the RPE cells in some people appear to become 'tired' and can eventually die, leading to vision loss.

"Damage can also occur within the surrounding tissue, resulting in bleeding into the back of the eye. Our goal is to produce a patch of healthy retinal tissue that repairs the damage while also supplying new healthy RPE cells."

Professor Harkin's team will move in early 2014 to a purpose built eye research facility within the new Queensland Eye Institute and South Bank Day Hospital at 140 Melbourne Street, South Brisbane.

Explore further: Loss of anti-aging gene possible culprit in age-related macular degeneration

Related Stories

Loss of anti-aging gene possible culprit in age-related macular degeneration

October 8, 2013
A team of researchers at Georgetown University Medical Center (GUMC) has found that loss of an anti-aging gene induces retinal degeneration in mice and might contribute to age-related macular degeneration, the major cause ...

Researcher advances retinal implant that could restore sight for the blind

November 15, 2013
People who went blind as a result of certain diseases or injuries may have renewed hope of seeing again thanks to a retinal implant developed with the help of FIU's W. Kinzy Jones, a professor and researcher in the College ...

Beating blindness with vegetable oil

August 15, 2013
Scientists working at the Research Center on Aging at the Health and Social Services Centre—University Institute of Geriatrics of Sherbrooke (CSSS-IUGS) have been studying strategies for protecting retinal pigment epithelium ...

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.