New hope for patients with macular degeneration

December 13, 2013, Queensland University of Technology
New hope for patients with macular degeneration
Associate Professor Damien Harkin with a silk scaffold that would be used to grow new cells to repair damaged eyes.

Macular degeneration is a leading cause of blindness in Australia, affecting one in seven people over the age of 50.

The impact of this disease that impairs the central field of vision is profound but thanks to research being conducted by QUT scientists and students a new treatment for is under development.

Associate Professor Damien Harkin of the School of Biomedical Sciences at QUT has spent the last seven years developing innovative ways to repair the eye in collaboration with scientists and clinicians at the Queensland Eye Institute (QEI).

A novel aspect of this work has been to explore the use of proteins found in silk as materials on which to grow and transplant new eye tissue.

Having successfully applied this concept to corneal stem cells, Professor Harkin and his QEI-based team have now turned their attention to the challenge of treating diseases of the retina and in particular macular degeneration.

"The ultimate goal of our research is to develop an effective, affordable and accessible treatment for patients afflicted with ," Professor Harkin said.

"The use of stem cells in conjunction with is just one of many good ideas worth investigating."

Supported by The Macular Diseases Foundation of Australia (MDFA), Professor Harkin and his team were recently awarded a prestigious grant to explore the potential of silk proteins as materials for repairing the retina.

QUT students past and present have played a vital role in Professor Harkin's important research including Dr Laura Bray who was awarded the inaugural Prime Minister's Queen Elizabeth II Diamond Jubilee Award in 2012 to continue her studies of corneal tissue engineering using silk proteins in Dresden, Germany.

More recently, the group's studies of the retina have been driven by the efforts of Ms Audra Shadforth, who is exploring the use of silk proteins as a scaffold for retinal pigment epithelial (RPE) cells.

"RPE cells are responsible for maintaining the survival and function of the retinal cells that are required to sense light (rods and cones)," Ms Shadforth said.

"As the retina ages, the RPE cells in some people appear to become 'tired' and can eventually die, leading to vision loss.

"Damage can also occur within the surrounding tissue, resulting in bleeding into the back of the eye. Our goal is to produce a patch of healthy retinal tissue that repairs the damage while also supplying new healthy RPE cells."

Professor Harkin's team will move in early 2014 to a purpose built eye research facility within the new Queensland Eye Institute and South Bank Day Hospital at 140 Melbourne Street, South Brisbane.

Explore further: Flexible adult stem cells, right there in your eye

Related Stories

Flexible adult stem cells, right there in your eye

January 5, 2012
In the future, patients in need of perfectly matched neural stem cells may not need to look any further than their own eyes. Researchers reporting in the January issue of Cell Stem Cell, a Cell Press publication, have identified ...

Loss of anti-aging gene possible culprit in age-related macular degeneration

October 8, 2013
A team of researchers at Georgetown University Medical Center (GUMC) has found that loss of an anti-aging gene induces retinal degeneration in mice and might contribute to age-related macular degeneration, the major cause ...

Researcher advances retinal implant that could restore sight for the blind

November 15, 2013
People who went blind as a result of certain diseases or injuries may have renewed hope of seeing again thanks to a retinal implant developed with the help of FIU's W. Kinzy Jones, a professor and researcher in the College ...

Beating blindness with vegetable oil

August 15, 2013
Scientists working at the Research Center on Aging at the Health and Social Services Centre—University Institute of Geriatrics of Sherbrooke (CSSS-IUGS) have been studying strategies for protecting retinal pigment epithelium ...

Researchers report progress using iPS cells to reverse blindness

June 15, 2011
Researchers have used cutting-edge stem cell technology to correct a genetic defect present in a rare blinding disorder, another step on a promising path that may one day lead to therapies to reverse blindness caused by common ...

Stem cell therapy for age-related macular degeneration -- a step closer to reality

March 24, 2011
The notion of transplanting adult stem cells to treat or even cure age-related macular degeneration has taken a significant step toward becoming a reality. In a study published today in Stem Cells, Georgetown University ...

Recommended for you

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.