New computational model reveals novel possibilities for H. pylori treatment

December 6, 2013 by John David Pastor
New computational model reveals novel possibilities for H. pylori treatment
Adria Carbo reviews computer models for the H. pylori experiment

A new computational model developed by researchers at the Center for Modeling Immunity to Enteric Pathogens at Virginia Tech's Virginia Bioinformatics Institute offers new ways to study host immune responses to the gastric ulcer-causing bacterium Helicobacter pylori.

Using the model, researchers identified an abnormal linked to development of lesions during H. pylori of the stomach. Their findings may help clinicians pinpoint how best to treat such infections.

"This large-scale of host responses to H. pylori infection combines cutting-edge approaches in computational modeling and experimental research to help elucidate immune responses to H. pylori," said Raquel Hontecillas, co-director of the center, which is part of Virginia Tech's Nutritional Immunology and Molecular Medicine Laboratory.

H. pylori lives in the human gut and sometimes causes ulcers and cancers. Currently, doctors treat H. pylori infections with antibiotics that destroy the bacteria. However, H. pylori also can protect against diseases such as asthma, obesity and diabetes. Understanding how a harmless bacterial population becomes virulent and leads to disease has been difficult, but the computational model developed by the center researchers has led to new insights.

Based on results from experimental work with mouse models, the team of scientists built a computational simulation that can predict how and when infection begins and progresses. The model shows the position of cells during infection and accounts for the non-uniformity and randomness of immune responses.

Using the computational model, laboratory researchers found that, although H. pylori may be responsible for starting an infection, abnormal immune responses can contribute to chronic ulcers or cancers.

"The knowledge gained from such models will accelerate the development of novel drugs and vaccines for H. pylori-associated diseases," said Hontecillas. "The ultimate aim may not be to destroy H. pylori but to learn how to manipulate the interaction of the bacterium and host immune system to produce beneficial effects."

Explore further: Researchers develop model to study immune response to infections that cause peptic ulcers

More information: Carbo A, Bassaganya-Riera J, Pedragosa M, Viladomiu M, Marathe M, et al. (2013) Predictive Computational Modeling of the Mucosal Immune Responses during Helicobacter pylori Infection. PLoS ONE 8(9): e73365. DOI: 10.1371/journal.pone.0073365

Related Stories

Researchers develop model to study immune response to infections that cause peptic ulcers

September 24, 2013
(Medical Xpress)—Researchers at the Virginia Bioinformatics Institute have developed a new large animal model to study how the immune system interacts with the stomach bacterium Helicobacter pylori, the leading cause of ...

Villain stomach bug may have a sweet side: Researchers reveal how 'bad' gut bacteria may help control diabetes

February 8, 2013
A stomach bacterium believed to cause health problems such as gastritis, ulcers, and gastric cancer may play a dual role by balancing the stomach's ecosystem and controlling body weight and glucose tolerance, according to ...

Ironing out the link between H. pylori infection and gastric cancer

December 21, 2012
H. pylori frequently causes gastric ulcers and is also one of the greatest risk factors for gastric cancer. H. pylori infection is also associated with another gastric cancer risk factor, iron deficiency.

Stomach bacteria switch off human immune defences to cause disease

September 1, 2013
Helicobacter pylori is a bacterium that establishes a life-long stomach infection in humans, which in some cases can lead to duodenal ulcers or stomach cancer. New research, presented at this week's Society for General Microbiology ...

Some bacteria may protect against disease caused by stomach infection

March 12, 2013
Half of the world's human population is infected with the stomach bacteria called Helicobacter pylori, yet it causes disease in only about 10 percent of those infected. Other bacteria living in the stomach may be a key factor ...

Other stomach microbiota modulate resistance to H. pylori-driven ulcers

March 25, 2013
Mice with different naturally occurring stomach bacteria have distinct susceptibilities to disease caused by Helicobacter pylori, the well-known cause of ulcers in humans, according to a study published online ahead of print ...

Recommended for you

Two lung diseases killed 3.6 million in 2015: study

August 17, 2017
The two most common chronic lung diseases claimed 3.6 million lives worldwide in 2015, according to a tally published Thursday in The Lancet Respiratory Medicine.

New test differentiates between Lyme disease, similar illness

August 16, 2017
Lyme disease is the most commonly reported vector-borne illness in the United States. But it can be confused with similar conditions, including Southern Tick-Associated Rash Illness. A team of researchers led by Colorado ...

Addressing superbug resistance with phage therapy

August 16, 2017
International research involving a Monash biologist shows that bacteriophage therapy – a process whereby bacterial viruses attack and destroy specific strains of bacteria - can be used successfully to treat systemic, multidrug ...

Can previous exposure to west Nile alter the course of Zika?

August 15, 2017
West Nile virus is no stranger to the U.S.-Mexico border; thousands of people in the region have contracted the mosquito-borne virus in the past. But could this previous exposure affect how intensely Zika sickens someone ...

Compounds in desert creosote bush could treat giardia and 'brain-eating' amoeba infections

August 15, 2017
Researchers at Skaggs School of Pharmacy and Pharmaceutical Sciences at University of California San Diego and the University of Colorado Anschutz Medical Campus have found that compounds produced by the creosote bush, a ...

New malaria analysis method reveals disease severity in minutes

August 11, 2017
Left untreated, malaria can progress from being mild to severe—and potentially fatal—in 24 hours. So researchers at the University of British Columbia developed a method to quickly and sensitively assess the progression ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.