Scientists discover how immune cells die during HIV infection; identify potential drug to block AIDS

December 19, 2013
To discover how HIV causes AIDS, Gladstone scientists studied HIV-infected samples of human tonsil and spleen tissue. In this image, captured by an electron microscope, HIV is infecting these CD4 T immune cells. Credit: Gilad Doitsh/Gladstone Institutes

Research led by scientists at the Gladstone Institutes has identified the precise chain of molecular events in the human body that drives the death of most of the immune system's CD4 T cells as an HIV infection leads to AIDS. Further, they have identified an existing anti-inflammatory drug that in laboratory tests blocks the death of these cells—and now are planning a Phase 2 clinical trial to determine if this drug or a similar drug can prevent HIV-infected people from developing AIDS and related conditions.

Two separate journal articles, published simultaneously today in Nature and Science, detail the research from the laboratory of Warner C. Greene, MD, PhD, who directs virology and immunology research at Gladstone, an independent biomedical-research nonprofit. His lab's Science paper reveals how, during an HIV infection, a protein known as IFI16 senses fragments of HIV DNA in abortively infected . This triggers the activation of the human enzyme caspase-1 and leads to pyroptosis, a fiery and highly inflammatory form of cell death. As revealed in the Nature paper, this repetitive cycle of abortive infection, cell death, inflammation and recruitment of additional CD4 T cells to the infection "hot zone" ultimately destroys the immune system and causes AIDS. The Nature paper further describes laboratory tests in which an existing anti-inflammatory inhibits caspase-1, thereby preventing pyroptosis and breaking the cycle of cell death and inflammation.

"Gladstone has made two important discoveries, first by showing how the body's own immune response to HIV causes CD4 T via a pathway triggering inflammation, and secondly by identifying the host DNA sensor that detects the viral DNA and triggers this death response," said Robert F. Siliciano, MD, PhD, a professor of medicine at Johns Hopkins University, and a Howard Hughes Medical Institute investigator. "This one-two punch of discoveries underscores the critical value of basic science—by uncovering the major cause of CD4 T cell depletion in AIDS, Dr. Greene's lab has been able to identify a potential new therapy for blocking the disease's progression and improving on current antiretroviral medications."

The research comes at a critical time, as so-called AIDS fatigue leads many to think that HIV/AIDS is solved. In fact, HIV infected an additional 2.3 million people last year, according to UNAIDS estimates, bringing the global total of HIV-positive people to 35.3 million. Antiretroviral medications (ARVs) can prevent HIV infections from causing AIDS, but they do not cure AIDS. Further, those taking ARVs risk both a latent version of the virus, which can rebound if ARVs are discontinued, and the premature onset of diseases that normally occur in aging populations. Plus, some 16 million people who carry the virus do not have access to ARVs, according to World Health Organization estimates.

Seeking solutions for all these challenges, the new Gladstone discovery builds on earlier research from Dr. Greene's lab, published in Cell in 2010. This study showed how HIV attempts, but fails, to productively infect most of the immune system's CD4 T cells. In an attempt to protect the body from the spreading virus, these immune cells then commit "cellular suicide," leading to the collapse of the immune system—and AIDS.

After that research, the Gladstone scientists began to look for ways to prevent this process by studying exactly how the suicidal response is initiated. Working in the laboratory with human spleen and tonsil tissue, as well as lymph-node tissue from HIV-infected patients, the researchers found that these so-called abortive infections leave fragments of HIV's DNA in the immune cells. As described in Nature, pyroptosis ensues as immune cells rupture and release inflammatory signals that attract still more cells to repeat the death cycle.

"Our studies have investigated and identified the root cause of AIDS—how CD4 T cells die," said Gladstone Staff Research Investigator Gilad Doitsh, PhD, who is the Nature paper's lead author, along with Nicole Galloway and Xin Geng, PhD. "Despite some 30 years of HIV research, this key HIV/AIDS process has remained pretty much a black box."

Once the scientists discovered this key process, as described in Nature, they began to investigate how the body senses the fragments of HIV's DNA in the first place, before alerting the enzyme caspase-1 to launch an immune response in the CD4 T cells. To identify the so-called DNA sensor, the scientists found a way to genetically manipulate CD4 T cells in spleen and tonsil tissue. In doing so, they discovered that reducing the activity of a protein known as IFI16 inhibited pyroptosis, explained Zhiyuan Yang, PhD, a Gladstone postdoctoral fellow who is one of the paper's two lead authors.

"This identified IFI16 as the DNA sensor, which then sends signals to caspase-1 and triggers pyroptosis," says Kathryn M. Monroe, PhD, the Science paper's other lead author, who completed the research while a postdoctoral fellow at Gladstone. "We can't block a process until we understand all of its steps—so this discovery is critical to devising ways to inhibit the body's own destructive response to HIV. We have high hopes for the upcoming clinical trial."

The Phase 2 trial—which will test an existing anti-inflammatory's ability to block inflammation and pyroptosis in HIV-infected people—promises to validate a variety of expected advantages to this therapy. For example, by targeting the human body, or host, instead of the virus, the drug is likely to avoid the rapid emergence of drug resistance that often plagues the use of ARVs. The anti-inflammatory may also provide a bridge therapy for the millions without access to ARVs, while also reducing persistent inflammation in HIV-infected people already on ARVs. Many suspect this inflammation drives the early onset of aging-related conditions such as dementia and cardiovascular disease. By reducing inflammation, the drug might also prevent expansion of a reservoir of latent virus that hides in the body where it thwarts a cure for HIV/AIDS.

"This has been an absolutely fascinating voyage of discovery," said Dr. Greene, who is also a professor of medicine, microbiology and immunology at the University of California, San Francisco, with which Gladstone is affiliated. "Every time we turned over an 'experimental rock' in the studies, a new surprise jumped out."

Explore further: Scientists identify molecular signals that rouse dormant HIV infection

More information: "IFI16 DNA Sensor Is Required for Death of Lymphoid CD4 T Cells Abortively Infected with HIV," by K.M. Monroe et al. Science, 2013.

Related Stories

Scientists identify molecular signals that rouse dormant HIV infection

October 30, 2013
Perhaps the single greatest barrier to curbing the spread of HIV/AIDS is the dormant, or "latent," reservoir of virus, which is out of reach of even the most potent medications. But now, scientists at the Gladstone Institutes ...

Scientists find the invisibility cloak that shields HIV-1 from the immune system

November 21, 2013
Of the two major types of HIV, only one, HIV-1, typically causes AIDS in infected people who don't receive treatment. A study published by Cell Press November 21st in the journal Immunity reveals how HIV-1 escapes detection ...

Viral replication may not be primary cause of HIV-1 persistence in patients receiving cART

November 26, 2013
(Medical Xpress)—A team of researchers with members from Europe and the U.S. has found that viral replication may not be the main reason that the HIV virus is able to persist in the cells of infected patients for many years. ...

Scientists discover how HIV kills immune cells

June 5, 2013
Untreated HIV infection destroys a person's immune system by killing infection-fighting cells, but precisely when and how HIV wreaks this destruction has been a mystery until now. New research by scientists at the National ...

New target to fight HIV infection identified

October 1, 2013
A mutant of an immune cell protein called ADAP (adhesion and degranulation-promoting adaptor protein) is able to block infection by HIV-1 (human immunodeficiency virus 1), new University of Cambridge research reveals. The ...

Recommended for you

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

National roll-out of PrEP HIV prevention drug would be cost-effective

October 18, 2017
Providing pre-exposure prophylaxis (PrEP) medication to men who have sex with men who are at high risk of HIV infection (equivalent to less than 5% of men who have sex with men at any point in time) in England would be cost-effective, ...

Regulatory T cells harbor HIV/SIV virus during antiviral drug treatment

October 17, 2017
Scientists at Yerkes National Primate Research Center, Emory University have identified an additional part of the HIV reservoir, immune cells that survive and harbor the virus despite long-term treatment with antiviral drugs.

New research opens the door to 'functional cure' for HIV

October 17, 2017
In findings that open the door to a completely different approach to curing HIV infections, scientists from the Florida campus of The Scripps Research Institute (TSRI) have for the first time shown that a novel compound effectively ...

Researchers create molecule that could 'kick and kill' HIV

October 5, 2017
Current anti-AIDS drugs are highly effective at making HIV undetectable and allowing people with the virus to live longer, healthier lives. The treatments, a class of medications called antiretroviral therapy, also greatly ...

A sixth of new HIV patients in Europe 50 or older: study

September 27, 2017
People aged 50 and older comprise a growing percentage of HIV patients in Europe, accounting for one in six new cases in 2015, researchers said Wednesday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.