Confronting secondary injuries from brain trauma

December 10, 2013 by Beth-Ann Kerber

Every day, thousands of people nationwide are hospitalized or treated in emergency rooms as a result of traumatic brain injuries, from mild concussions to the most severe cases. Yet the initial incident may not be the sole determining factor in a patient's outcome. Instead, it's what comes in the days after that injury that could have the most impact.

The reason lies in part with the body's normal healing response. With the limited space available in the skull, the accumulation of extra nutrients and fluid in the brain as part of the healing process can cause dangerous swelling, reducing the flow of oxygen-rich blood and injuring parts of the brain not impacted initially.

These secondary injuries often are more damaging than the initial trauma. And because they happen gradually – usually within the first 48 hours, but as long as five days after the injury – knowing the best time for treatment to prevent the swelling has been a challenge.

"Treatments exist, but it is difficult to predict when they should be applied, since we don't fully understand what triggers the swelling. As a result, treatment often comes too late," says Shabbar F. Danish, an assistant professor of neurosurgery at Robert Wood Johnson Medical School.

Frustrated by a lack of real-time measures to predict such swelling and eager to find a way to improve outcomes for his patients, Danish sought a solution in his work as a mentor for students in the senior design project curriculum of the Department of Biomedical Engineering at Rutgers.

Danish presented Alex Krasner, then a Rutgers undergraduate, with the challenge: create a device and the software that could provide such real-time data. The end result was a prototype that serves as the basis for the Continuous Hemodynamic Autoregulation Monitor (CHARM).

Now Danish is serving as coinvestigator with William Craelius, professor of biomedical engineering at Rutgers, on a three-year, $539,000 grant from the New Jersey Commission on Brain Injury Research to further develop this prototype.

Testing the Clinical Application

"This study expands on the senior design project work and will put it to use in the clinical environment. It is about perfecting the CHARM unit and giving clinicians data they can follow to better treat these patients," notes Danish, who is also the director of stereotactic and functional neurosurgery at the and director of the Gamma Knife Center at Rutgers' Robert Wood Johnson University Hospital.

Once developed, CHARM units will be installed in the critical care units at Robert Wood Johnson University Hospital and JFK Medical Center – where Steven V. Escaldi, clinical assistant professor of physical medicine and rehabilitation and medical director, Outpatient Spasticity Clinic at JFK Johnson Rehabilitation Institute, will assist with providing and interpreting patient data for the study. The unit will be developed at Rutgers' Biomechanics and Rehabilitation Engineering Laboratory, where Krasner is studying for his master of science degree under the supervision of Danish and Craelius, the laboratory's director.

"Our goal is to help attending physicians make informed therapeutic decisions during TBI treatments by providing continuous, accurate predictive information," says Craelius, the study's principal investigator.

By developing an intelligent monitor of blood supply to the brain that will help guide therapeutic interventions after TBI, the researchers are hoping to develop a method to predict the swelling up to an hour before it occurs, Craelius adds.

Understanding the Process

Under normal circumstances, the body is able to maintain a relatively constant flow of blood to the brain due to the protective process known as autoregulation. However, after a , that ability is often lost. If there's too little pressure, the brain tissue can become ischemic (not enough blood flow); too much, and the intracranial pressure increases. Either can mean secondary injuries resulting in disability or even death.

The CHARM units are designed to continuously monitor the brain's ability to autoregulate cerebral pressure, so that information can be reported efficiently to clinicians during treatment, resulting in better clinical interventions, Dr. Craelius says.

"The actual values and their potential meanings are known, but there has not been a well-established way to collect the data and perform real-time analysis. This device would allow us to do that," Danish adds.

Though in its earliest stages – the grant began in June – this research addresses a growing problem in the state as well as nationwide. Between 12,000 and 15,000 New Jersey residents suffer brain injuries from traumatic events each year, of which 1,000 are fatal, NJCBIR statistics indicate. In addition, approximately 175,000 people in the state currently live with disabilities resulting from TBIs.

Nationally, at least 1.7 million TBIs occur each year, with 237,000 people hospitalized with moderate to severe TBI and 52,000 resulting deaths, according to the Centers for Disease Control and Prevention – a mortality rate of about 3 percent, compared to New Jersey's 7 percent.

The Power of Collaboration

This new research collaboration epitomizes the synergies inherent in the closer ties now between the medical school and Rutgers – combining the expertise of the neurosurgeons and physiatrists involved in the clinical care of patients who have TBIs with engineers' technical expertise needed to create the device and develop the software program to achieve the project's goals.

And it is a natural outgrowth of the clinical and research missions of the medical school. "We are constantly thinking of ideas to improve care and outcomes for patients," says Danish.

Explore further: Could a 'Trojan horse' better identify traumatic brain injury?

Related Stories

Could a 'Trojan horse' better identify traumatic brain injury?

October 28, 2013
Accurately diagnosing traumatic brain injuries and concussions is difficult, as standard CT or MRI scans can't see most changes to the brain caused by these injuries.

Adherence to the 'Guidelines for Management of Severe Traumatic Brain Injury' saves lives

October 8, 2013
Researchers found a significant reduction in the number of deaths of patients hospitalized in New York State with severe traumatic brain injury (TBI) between 2001 and 2009. The Brain Trauma Foundation, in collaboration with ...

New treatment more effective at reducing blood clots in brain-injured patients, surgeons find

November 18, 2013
Researchers from the University of Missouri School of Medicine have found that a new protocol that uses preventive blood-thinning medication in the treatment of patients with traumatic brain injuries reduces the risk of patients ...

Improvement of mood associated with improved brain injury outcomes

November 25, 2013
Mayo Clinic researchers found that improvement of mood over the course of post-acute brain rehabilitation is associated with increased participation in day-to-day activities, independent living, and ability to work after ...

Have a brain injury? You may be at higher risk for stroke

June 26, 2013
People who have a traumatic brain injury (TBI) may be more likely to have a future stroke, according to research that appears in the June 26, 2013, online issue of Neurology, the medical journal of the American Academy of ...

Traumatic brain injury: NIH-funded researchers will assess biomarkers for diagnosis and treatment

August 3, 2011
Biomarkers in the bloodstream could provide physicians with a quick and accurate method of assessing the severity of traumatic brain injury (TBI) and helping deliver and monitor the results of therapies, such as progesterone ...

Recommended for you

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Neuroscientists find chronic stress skews decisions toward higher-risk options

November 16, 2017
Making decisions is not always easy, especially when choosing between two options that have both positive and negative elements, such as deciding between a job with a high salary but long hours, and a lower-paying job that ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.