Silencing synapses: Hope for a pharmacological solution to cocaine addiction

December 17, 2013

Imagine kicking a cocaine addiction by simply popping a pill that alters the way your brain processes chemical addiction. New research from the University of Pittsburgh suggests that a method of biologically manipulating certain neurocircuits could lead to a pharmacological approach that would weaken post-withdrawal cocaine cravings. The findings have been published in Nature Neuroscience.

Researchers led by Pitt neuroscience professor Yan Dong used rat models to examine the effects of and withdrawal on in the nucleus accumbens, a small region in the brain that is commonly associated with reward, emotion, motivation, and addiction. Specifically, they investigated the roles of —the structures at the ends of nerve cells that relay signals.

When an individual uses , some immature synapses are generated, which are called "silent synapses" because they send few signals under normal physiological conditions. After that individual quits using cocaine, these "silent synapses" go through a maturation phase and acquire the ability to send signals. Once they can send signals, the synapses will send craving signals for cocaine if the individual is exposed to cues that previously led him or her to use the drug.

The researchers hypothesized that if they could reverse the maturation of the synapses, the synapses would remain silent, thus rendering them unable to send craving signals. They examined a chemical receptor known as CP-AMPAR that is essential for the maturation of the synapses. In their experiments, the synapses reverted to their silent states when the receptor was removed.

"Reversing the maturation process prevents the intensification process of cocaine craving," said Dong, the study's corresponding author and assistant professor of neuroscience in Pitt's Kenneth P. Dietrich School of Arts and Sciences. "We are now developing strategies to maintain the 'reversal' effects. Our goal is to develop biological and pharmacological strategies to produce long-lasting de-maturation of cocaine-generated silent synapses."

Dong collaborated with Susan Sesack, Pitt professor of ; Oliver Schlüter, independent group leader at the European Neuroscience Institute; Yavin Shaham, senior investigator for the Intramural Research Program of the National Institute on Drug Abuse; Eric Nestler, Nash Family Professor of Neuroscience and director of the Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai; and Marina Wolf, professor and chair of the Department of Neuroscience at the Chicago Medical School, Rosalind Franklin University of Medicine and Science.

The findings appear in "Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving," which was published in the November print issue of Nature Neuroscience. This research was supported by the National Institutes of Health's National Institute on Drug Abuse and the German Research Foundation.

Explore further: Sons of cocaine-using fathers may resist addiction to drug, study suggests

More information: www.nature.com/neuro/journal/v … 11/full/nn.3533.html

Related Stories

Sons of cocaine-using fathers may resist addiction to drug, study suggests

November 11, 2013
A father's cocaine use may make his sons less sensitive to the drug and thereby more likely to resist addictive behaviors, suggests new findings from an animal study presented by Penn Medicine researchers at Neuroscience ...

Researchers find glutamate receptor helps suppress cue induced cocaine craving

November 25, 2013
(Medical Xpress)—A team of researchers with members from several universities in the U.S. has found that a glutamate receptor given to test rats addicted to cocaine caused a reduction in cue induced cravings for the drug. ...

Cocaine decreases activity of a protein necessary for normal functioning of the brain's reward system

April 22, 2012
New research from Mount Sinai Medical Center in New York reveals that repeated exposure to cocaine decreases the activity of a protein necessary for normal functioning of the brain's reward system, thus enhancing the reward ...

Discovery could yield treatment for cocaine addicts

March 15, 2013
Scientists have discovered a molecular process in the brain triggered by cocaine use that could provide a target for treatments to prevent or reverse addiction to the drug.

Scientists focus on brain protein and antibiotic to block cocaine craving

June 3, 2013
A new study conducted by a team of Indiana University neuroscientists demonstrates that GLT1, a protein that clears glutamate from the brain, plays a critical role in the craving for cocaine that develops after only several ...

Recommended for you

New surgical strategy offers hope for repairing spinal injuries

July 28, 2017
Scientists in the UK and Sweden previously developed a new surgical technique to reconnect sensory neurons to the spinal cord after traumatic spinal injuries. Now, they have gained new insight into how the technique works ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.