Heads or tails? Random fluctuations in brain cell activity may determine toss-up decisions

December 5, 2013 by Michael C. Purdy, Washington University School of Medicine in St. Louis
Random fluctuations in brain cell activity may determine toss-up decisions
Humans make many decisions every day, such as whether to have pizza or salad for lunch. An emerging field known as neuroeconomics is combining economic theory with brain research to understand how these decisions are made. This week, scientists report new insights into decisions in which two options are equally appealing. Credit: Robert J. Boston

(Medical Xpress)—Life presents us with choices all the time: salad or pizza for lunch? Tea or coffee afterward? How we make these everyday decisions has been a topic of great interest to economists, who have devised theories about how we assign values to our options and use those values to make decisions.

An emerging field of study known as neuroeconomics is combining the economists' insights with scientific study of the brain to learn more about decision-making processes and how they can go awry. In the Dec. 8 issue of Neuron, one of the field's founders reports new links between brain cell activity and choices where two options have equal appeal.

"Neuroeconomics is not only helpful for the development of better economic theory, it is also relevant from a clinical point of view," said author Camillo Padoa-Schioppa, PhD, assistant professor of neurobiology, economics and of biomedical engineering at Washington University School of Medicine in St. Louis. "There are a number of conditions that involve impaired economic decision-making, including drug addiction, brain injury, some forms of dementia, schizophrenia and obsessive-compulsive disorder."

Scientists know that the , a region of the brain behind and above the eyes, plays a key role in making decisions. Patients with injuries to this part of the brain are often spectacularly bad at making decisions. They may do things like abandon longstanding relationships, gamble away money or lose it to swindlers, or become addicted to drugs.

To study the roles play in decision-making, Padoa-Schioppa developed a system for presenting primates a choice between two drinks, such as or apple juice. The type and amount of the drink varies, and researchers record the activity of individual brain neurons as the primates choose.

Based on the decisions of a single animal over multiple trials, scientists infer the subjective value the animal assigns to each drink and then look for ways this value is encoded in brain cells.

"For example, if we offer a larger amount of apple juice versus a smaller amount of grape juice, and the primate chooses each option equally often, we infer that this primate likes the grape juice better than the apple juice," he explained. "The primate could be getting more juice by choosing the cup with apple juice, but it doesn't always do so. That implies that the primate values grape juice more than ."

In 2006, Padoa-Schioppa and Harvard colleague John Assad, PhD, won international attention for using this system to identify brain cells whose firing rates encoded the subjective value of drink choices.

In a new analysis of data from the original experiment, Padoa-Schioppa showed that different groups of cells in the orbitofrontal cortex reflect different stages of the decision-making process.

"Some neurons encode the value of individual drinks; other neurons encode the choice outcome in a binary way ‒ these cells are either firing or silent depending on the chosen drink," he explained. "Yet other neurons encode the value of the chosen option."

Padoa-Schioppa then examined how different groups of cells determine decisions between options of equal value. He showed that toss-up decisions seemed to depend on changes in the initial state of the network of neurons in the orbitofrontal cortex.

"The fluctuations in the network took place before the primates were even offered a choice of juices, but they seem to somehow bias the decision," Padoa-Schioppa said. "Neuronal signals are always noisy. In essence, close-call decisions are partly determined by random noise."

He also found that decisions on choices of equal value were linked to the ease or difficulty with which nerve cells in parts of the orbitofrontal cortex communicate with each other. This property, known as synaptic efficacy, can be adjusted by the as part of the process of encoding information.

According to Padoa-Schioppa, these results provide new insights into the neuronal circuits that underlie economic decisions. He and his colleagues are using them to create a computational model of decision-making.

"The next step is to test that model," Padoa-Schioppa said. "For example, we would like to bias decisions by artificially manipulating the activity of specific groups of cells."

Explore further: Scientists pinpoint the brain circuitry linked to making healthy or unhealthy choices

More information: Padoa-Schioppa C. "Neuronal origins of choice variability in economic decisions.: Neuron, December 8, 2013.

Related Stories

Scientists pinpoint the brain circuitry linked to making healthy or unhealthy choices

October 30, 2011
(Medical Xpress) -- What drives addicts to repeatedly choose drugs, alcohol, cigarettes, overeating, gambling or kleptomania, despite the risks involved?

Researchers determine region of the brain necessary for making decisions about economic value

May 18, 2011
Neuroeconomic research at the University of Pennsylvania has conclusively identified a part of the brain that is necessary for making everyday decisions about value. Previous functional magnetic imaging studies, during which ...

Study pinpoints brain area's role in learning

November 26, 2012
An area of the brain called the orbitofrontal cortex is responsible for decisions made on the spur of the moment, but not those made based on prior experience or habit, according to a new basic science study from substance ...

Brain study shows why some people are more in tune with what they want

December 9, 2012
Wellcome Trust researchers have discovered how the brain assesses confidence in its decisions. The findings explain why some people have better insight into their choices than others.

New study decodes brain's process for decision making

November 8, 2013
(Medical Xpress)—When faced with a choice, the brain retrieves specific traces of memories, rather than a generalized overview of past experiences, from its mental Rolodex, according to new brain-imaging research from The ...

Recommended for you

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.