Researchers identify traffic cop mechanism for meiosis

December 12, 2013 by James Devitt, New York University

Researchers at NYU and the Whitehead Institute for Biomedical Research have identified the mechanism that plays "traffic cop" in meiosis—the process of cell division required in reproduction. Their findings, which appear in the journal eLife, shed new light on fertility and may lead to greater understanding of the factors that lead to birth defects.

"We have isolated a checkpoint that is necessary for a genome's viability and for normal development," says Andreas Hochwagen, an assistant professor in NYU's Department of Biology, who co-authored the paper with Hannah Blitzblau, a researcher at the Whitehead Institute for Biomedical Research. "Without this restraining mechanism, chromosomes can end up irreversibly broken during meiosis."

Most cells in an organism contain two sets of chromosomes, one inherited from the mother and the other from the father. However, sexual reproduction relies on the production of gametes—eggs and sperm—that contain only one set of chromosomes. These are produced through a specialized form of cell division—meiosis.

In this process, maternal and paternal versions of each chromosome pair up and swap sections of their DNA through a process known as homologous recombination—a "reshuffling" that gives rise to chromosomes with new combinations of maternal and paternal genes. This is followed by .

However, in order for normal development to occur, chromosomes must be replicated prior to their reshuffling. The disruption of this process jeopardizes reproduction and can spur a range of birth defects, notably Down syndrome.

Blitzblau and Hochwagen sought to determine what coordinates these processes to ensure they occur in proper order. Doing so would offer insights into how deviations from normal functionality could affect fertility and result in .

To do so, they examined budding yeast—a model organism in cell biology because its chromosome replication and regulation are similar to that of humans.

Through a series of manipulations, in which the researchers inhibited the activity of individual proteins, they found two enzymes that were necessary for meiosis: Mec1, which is similar to ATR, known to suppress tumors in humans, and DDK, which is a vital coordinator of chromosome reshuffling.

Specifically, they found that Mec1 senses when are being replicated and transmits a molecular "wait" signal to DDK. In this way, Mec1 acts like a traffic cop that allows chromosome replication to finish without interruption, before giving DDK the ok to begin the reshuffling.

Explore further: How yeast chromosomes avoid the bad breaks

Related Stories

How yeast chromosomes avoid the bad breaks

August 7, 2011
The human genome is peppered with repeated DNA elements that can vary from a few to thousands of consecutive copies of the same sequence. During meiosis—the cell division that produces sperm and eggs—repetitive ...

The machinery for recombination is part of the chromosome structure

August 9, 2011
During the development of gametes, such as egg and sperm cells in humans, chromosomes are broken and rearranged at many positions. Using state of the art technology, the research group of Franz Klein, professor for genetics ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.