Have researchers found a new treatment for sepsis?

December 3, 2013

Sepsis, or septicaemia, is a devastating disease that is difficult to diagnose early and for which treatment options are limited. The number of deaths from sepsis exceeds those from lung cancer, and from breast and bowel cancer combined.

Sepsis can affect any age group and is the leading cause of death in Intensive Care: it is estimated that 37,000 people die from severe sepsis in the UK each year with annual NHS costs exceeding £1.5billion.

Sepsis has until recently been under-recognised and despite advances in understanding the biological processes involved, there is still no effective treatment beyond supportive therapy.

Professor David Lambert and Dr Jonathan Thompson of the Department of Cardiovascular Sciences at the University of Leicester have published two collaborative indicating that a newly discovered receptor in the body – similar to the receptors for endorphins or for morphine - might be important in the body's response to sepsis, which could be the key to unlocking a new treatment in the future.

This new receptor is called the 'nociceptin receptor' and the natural substance that activates it is called nociceptin.

The body's initial response to sepsis is to produce an intense reaction from the immune system to fight the infection. This first involves activation of white blood cells, stress hormones and other substances, known as 'inflammatory mediators', which cause inflammation.

It has already been found that nociceptin is involved in inflammation; it affects how work. This suggests strongly that nociceptin has an important role in the body's response to inflammation and sepsis. Their theory, which they have explored in both research papers, is that nociceptin makes inflammation or sepsis worse; by blocking the nociceptin system, the symptoms of sepsis could be reduced, which could lead to new treatments.

In the first of the two papers Professor Lambert, as part of a collaboration with Dr Zoë Brookes at the University of Sheffield and Dr Girolamo Calo and Dr Remo Guerrini at the University of Ferrara, has shown for the first time using fluorescent chemistry - which was designed in Ferrara - that nociceptin receptors are found on blood vessels with no nerve supply and that in a laboratory model of sepsis, blocking these receptors is protective. This work was funded by British Journal of Anaesthesthia / Royal College of Anaesthetists and Anaesthetic Research Society.

In the second paper, funded by the Association of Anaesthetists of Great Britain and Ireland and British Journal of Anaesthesia / Royal College of Anaesthetists, Dr Thompson and Professor Lambert have discovered that nociceptin levels in the bloodstream are elevated in patients with sepsis in Intensive Care, demonstrating that nociceptin activation might be important in critically ill patients suffering from sepsis.

Sepsis remains a leading cause of admission to Intensive Care Units, with high mortality, costs, and long-term morbidity in those who survive. The incidence of has increased over the last decade, making the discovery of new treatments highly desirable.

Dr Jonathan Thompson said: "Sepsis is a major health problem for the NHS that has often been under-recognised. It can be rapidly fatal, especially if not diagnosed and treated early, because inflammation can spread and affect many different organs in the body.

"Clinicians are making progress in the early recognition and treatment of sepsis, but we have no specific drugs that effectively stop the spread of inflammation, or the involved. We have found that nociceptin, a chemical similar to endorphins produced in the body, is increased in inflammation and sepsis.

"This suggests that drugs which block the nociceptin receptor could dampen the widespread that occurs in , and improve outcome. More work is needed, but these drugs are being developed. If they are effective then we could potentially save many lives."

Professor David Lambert added: "I am particularly excited by these findings as they translate many years of laboratory work into a possible target for this disease."

Explore further: Researchers discover a protein that triggers inflammatory responses in hemorrhage and sepsis

More information: The first paper, 'The Nociceptin/Orphanin FQ Receptor Antagonist UFP-101 Reduces Microvascular Inflammation to Lipopolysaccharide In Vivo', can be accessed at the following link: www.plosone.org/article/info%3 … journal.pone.0074943

The second paper, 'The Nociceptin/Orphanin FQ System Is Modulated in Patients Admitted to ICU with Sepsis and after Cardiopulmonary Bypass', can be accessed at the following link: www.plosone.org/article/info%3 … journal.pone.0076682

Related Stories

Researchers discover a protein that triggers inflammatory responses in hemorrhage and sepsis

October 6, 2013
Investigators at The Feinstein Institute for Medical Research have discovered a protein in the human body that can trigger and mediate inflammation in patients suffering from hemorrhage and sepsis. The findings were published ...

Research identifies potential new treatment for sepsis

November 14, 2013
Sepsis is the leading cause of in-hospital death and there is no specific treatment for it. Now, research led by Dr. Qingping Feng of Western University (London, Canada) suggests a protein called recombinant human annexin ...

Study shows decrease in sepsis mortality rates

November 13, 2013
A recent study from Boston University School of Medicine (BUSM) and Boston Medical Center (BMC) shows a significant decrease in severe sepsis mortality rates over the past 20 years. Looking at data from patients with severe ...

Inappropriate activation of an immune signaling pathway during infection leaves the body vulnerable to sepsis

September 26, 2012
The inflammatory response is a double-edged sword—it enables the body to mount a vigorous defense against infection, but can also inflict serious physiological damage if allowed to rampage uncontrolled. Patients experience ...

Researchers suggest new way of looking at what causes sepsis

June 23, 2011
Researchers at St. Michael's Hospital have put forward a new theory as to what causes sepsis, an often fatal condition that occurs when infection spreads throughout the body.

Rising rates of severe and fatal sepsis during labor and delivery

September 23, 2013
Rates of severe sepsis and deaths from sepsis among U.S. women hospitalized for delivery have risen sharply over the last decade, reports a study in the October issue of Anesthesia & Analgesia, official journal of the International ...

Recommended for you

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.