Animal study reveals sex-specific patterns of recovery from newborn brain injury

January 30, 2014, Johns Hopkins University School of Medicine

Physicians have long known that oxygen deprivation to the brain around the time of birth causes worse damage in boys than girls. Now a study by researchers from the Johns Hopkins Children's Center conducted in mice reveals one possible reason behind this gender disparity and points to gender-specific mechanisms of brain repair following such injury.

The results of the study, to appear in the February issue of the journal Neuroscience, show that inherent differences in the way newborn brains react to the sex hormone estradiol may be behind the sex-specific response to damage and cell repair.

"Our observations reveal intriguing differences in the way male and female brains respond to injury following oxygen deprivation and in the manner in which they recover following such injury," says lead investigator Raul Chavez-Valdez, M.D., a neonatologist at the Johns Hopkins Children's Center.

In addition, the researchers say, neurons in male and female brains undergo different type of cell death following oxygen deprivation that may be due to the presence of certain receptors that trigger sex-specific pathways of cell demise.

Lastly, the scientists say, their results clarify an earlier observation that the brains of male mice, while sustaining worse damage overall, tend to respond better to certain types of therapies that halt .

Watch Hadley's story of birth-related brain injury and the 'cooling' therapy at Johns Hopkins Children's Center NICU that saved her

The findings, Chavez-Valdez says, underscore the need to explore questions about gender differences in all studies, including those conducted in animals, infants and children. Answering these questions in this case could prove to be a stepping stone toward finding precisely targeted, gender-based therapies to stimulate brain cell preservation and recovery, the team says.

"Our findings show just how important gender-specific research is. Not only are sex differences a powerful player in the pathology and course of disease, but our results indicate that such differences begin to emerge very early in life, in the very first days of birth and, indeed, perhaps long before that," says senior study investigator Frances Northington, M.D., a neonatologist at the Johns Hopkins Children's Center.

For their experiments, the investigators homed in on a critical cell repair protein called brain-derived neurotrophic factor (BDNF), known for its role in stimulating the growth and regeneration of neurons in the brain. Adequate amounts of this neuron-nurturing protein ensure cell health in areas of the brain associated with a range of vital functions, such as processing of sensory information, learning and memory.

Examining tissue from newborn mice with , the researchers noticed that following oxygen-deprivation, cells rapidly release BDNF, causing a spike in its levels, followed by a precipitous dip 96 hours thereafter. The team observed that BDNF levels in male and followed the same spike-dip patterns. However, they found a disproportionately higher presence of two BDNF receptors in the brains of female mice that promote a milder form of cell death after . These receptors, the researchers say, trigger a form of neuronal death known as apoptosis, a type of programmed cell death. The brains of male mice, on the other hand, had fewer of these injury-blunting receptors. The scarcity of such receptors in male mice, the researchers believe, causes neurons in the male brain to undergo necrosis, a more violent type of cell death marked by bursting or disintegration of the cell, which can also wreak damage on neighboring cells.

When researchers treated brain-injured animals with a substance called necrostatin-1, or nec-1, previously shown to halt necrotic in the brains of mice, they noted a markedly different response to treatment in male and female animals. The brains of male mice had 41 percent more BDNF than female mice 96 hours after injury. In other words, nec-1 exhibited sex-specific protective effects. Could sex hormones explain this gender gap?

To answer this question, the researchers turned their attention to estradiol, the chief female sex hormone, also found in smaller amounts in males. Newborn male and female mice had similar levels of estradiol in their brains, the researchers noted, yet, they somehow responded differently to it. The investigators observed that following treatment with nec-1, the brain cells of male mice had a higher concentration of a receptor known as alpha estrogen receptor. Alpha estrogen receptors' primary role is to increase cell sensitivity to estradiol, a type of estrogen, but one of its lesser known actions is to promote BDNF production. Thus, the researchers say, nec-1 appears to fuel the expression of such receptors in the male brain, which in turn trigger more BDNF production.

Investigators say the Neurosciences Intensive Care Nursery team at Johns Hopkins is also planning a study in human newborns to track the behavior of BDNF in response to brain injury and treatments.

Temporary cutoff of oxygen to the brain before, during or immediately after birth can cause a range of neurologic, developmental and learning disorders, including cerebral palsy, which is believed to occur in one to three out of 1,000 full-term newborns. Newborn boys have a 40 percent greater risk of developing cerebral palsy following hypoxic brain injury.

Explore further: His and hers: Male hormones control differences in mammary gland nerve growth

Related Stories

His and hers: Male hormones control differences in mammary gland nerve growth

December 6, 2012
Johns Hopkins scientists have found a surprising mechanism that gives male sex hormones like testosterone control over the gender-specific absence or presence of mammary gland nerves that sense the amount of milk available ...

Estrogen hormone reveals protective ability after traumatic brain injury

April 23, 2012
With more than 1.7 million people sustaining a traumatic brain injury each year, the need to identify processes to limit inflammation and subsequent damage is critical. Approximately 275,000 people are hospitalized annually ...

Estrogen promotes blood-forming stem cell function

January 22, 2014
Scientists have known for years that stem cells in male and female sexual organs are regulated differently by their respective hormones. In a surprising discovery, researchers at the Children's Medical Center Research Institute ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.