Neuroscientists use lightwaves to improve brain tumor surgery

January 29, 2014, Henry Ford Health System

First-of-its-kind research by the Innovation Institute at Henry Ford Hospital shows promise for developing a method of clearly identifying cancerous tissue during surgery on one of the most common and deadliest types of brain tumor. When expanded upon by further research, the findings offer the potential of improved outcome for those undergoing surgery to remove glioblastoma multiforme (GBM), a tumor that attacks tissue around nerve cells in the brain.

The study is published in the February issue of Journal of Neuro-Oncology.

"Even with intensive treatment, including surgical removal of as much as is currently possible combined with radiation and chemotherapy, the prognosis for GBM patients remains dismal," says Steven N. Kalkanis, M.D., a neurosurgeon and co-director Henry Ford's Hermelin Brain Tumor Center.

"For now, their average life expectancy is around 12 to 18 months," says Dr. Kalkanis, lead author of the study. Also involved in the study were members of the departments of Electrical and Computer Engineering, and Surgery at Wayne State University in Detroit. GBM poses a particular problem for the surgeon. While some tumors have clearly defined edges, or margins, that differentiate it from normal brain tissue, GBM margins are diffuse, blending into healthy tissue. This leaves the neurosurgeon uncertain about successfully finding and removing the entire malignancy.

The Henry Ford team set out to develop a highly accurate, efficient and inexpensive tool to distinguish normal brain tissue from both GBM and necrotic (dead) tissue rapidly, in real time, in the operating room.

The researchers chose Raman spectroscopy, which measures scattered light to provide a wavelength "signature" for the material being studied. The developer, Indian physicist Sir C.V. Raman, won the 1930 Nobel Prize for Physics, and his spectroscopy has been used to remotely test industrial pollution in smokestack plumes, among other widely varied applications.

Although Raman was developed in 1930, it was only very recently that the processing technology was able to be condensed into a tiny space (such as would fit on an intraoperative probe). And in addition to advances in processing speed, results can now be available in a fraction of a second.

"We decided to take full advantage of these advancements, which lend themselves exceptionally well to a small, portable hand-held device, potentially yielding immediate results in real-time. When developed, it would be the first of its kind in the world for this sort of brain tumor application," says Dr. Kalkanis.

Using 40 frozen sections of GBM-riddled brain tissue, the Henry Ford team aimed to develop a database of normal brain matter, GBM and as identified by Raman spectroscopy, as well as a statistical analysis algorithm for providing rapid diagnosis of tumor margins during brain surgery.

After creating and testing their method, the researchers were able to distinguish the three types of tissue with up to 99.5 percent accuracy. Normal was found to have increased lipid content, necrotic tissue had increased protein and nucleic acid content, and GMB tissue fell somewhere in between the two.

One complication of the study, which Kalkanis says was not unexpected, arose from the use of frozen tissue slices. Artifacts of tissue damaged by freezing were found in many of the test samples and slightly lowered the accuracy of the team's analysis of some samples.

Frozen artifact can make it more difficult to visually identify normal brain matter and cancerous tissue, and also changes the basic molecular structure of the tissue. This is caused by the formation of ice crystals, which expand quickly and rupture cell membranes.

The result is decreased lipid content and an increase in DNA and protein inside the cells – the primary measures used by the researchers in developing the proof of their Raman spectroscopy technique.

"But because we are developing these techniques to be used on live tissue during surgery, freeze artifact should not be a significant confounding factor," Kalkanis said.

Future studies, he said, will focus on methods of collecting and identifying Raman "signatures" from tissue with freeze artifact. Also, because tests in the current study were run only on homogenous tissue samples, more research will be directed at tissue containing the diffused margins of GBM infiltration.

Explore further: Personalized vaccine for most lethal type of brain tumor shows promise

Related Stories

Personalized vaccine for most lethal type of brain tumor shows promise

December 16, 2013
Patients with recurrent glioblastoma multiforme (GBM) treated with an experimental vaccine made from the patient's own resected tumor tissue showed an improved survival compared with historical patients who received the standard ...

New laser-based tool could dramatically improve the accuracy of brain tumor surgery

September 4, 2013
In the battle against brain cancer, doctors now have a new weapon—a new imaging technology that will make brain surgery dramatically more accurate by allowing surgeons to distinguish—at a microscopic level—between brain ...

How brain tumors invade

December 12, 2011
Scientists have pinpointed a protein that allows brains tumors to invade healthy brain tissue, according to work published this week in the Journal of Experimental Medicine.

'Fingerprinting' breakthrough offers improved brain tumour diagnosis

September 21, 2012
(Medical Xpress)—UK scientists have made a breakthrough in a new method of brain tumour diagnosis, offering hope to tens of thousands of people.

Scientists uncover new target for brain cancer treatment

January 9, 2014
A new study is giving researchers hope that novel targeted therapies can be developed for glioblastoma multiforme (GBM), the most common and most aggressive form of brain cancer, after demonstrating for the first time that ...

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.